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Abstract

The article discusses methods for reducing the impact of nonlinearity in the transformation function of measurement
devices on the accuracy of measurement results by applying an additional correction device that implements a dependency that is
inverse to the transformation function. The aim of the research is to explore the possibilities of using artificial neural networks,
specifically multilayer perceptrons and radial basis function networks, as such correctors. The effectiveness of the proposed
correction methods for the transformation function has been investigated through simulation computer modeling, examining the
impact of the type of nonlinearity on the quality of such correction. A comparative analysis was carried out with traditional
approaches, specifically a corrector based on polynomial approximation. The simulation results indicate that the accuracy of
neural network correctors is comparable to that of polynomial correctors, and in some cases, even superior. This opens up
prospects for a broader application of such modern measurement data processing methods as artificial neural networks in

measurement technology.

Keywords: nonlinearity, correction, transformation function, artificial neural network, multilayer perceptron, radial basis
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1. Introduction

The last few decades have been marked by the
rapid development of information technologies, which
have radically and fundamentally changed not only the
usual way of human life but also entire sectors of the
economy in most developed countries of the world. An
undeniable achievement of scientific thought has been
the successes in the development of artificial
intelligence. Research in the field of artificial neural
networks, deep learning, and fuzzy systems has enabled
the implementation of quite complex methods of
mathematical processing and analysis of large data sets,
as well as solving a number of classification,
optimization, = management,  pattern  recognition,
identification, approximation of complex nonlinear
dependencies, diagnostics, and other tasks.

The field of measurements and measurement
technology is also not left behind and is actively trying to
utilize more effective methods of information processing
that will enhance the accuracy and reliability of
measurement results. The role of such methods becomes
increasingly important with the complexity of
measurements and the rising demands for their accuracy.

New directions in applied mathematics, such as the
theory of artificial neural networks, interval analysis,
robust and nonparametric statistics, fuzzy logic, wavelet
analysis, and several others, provide a mathematical
framework for solving those problems for which
classical data processing methods are ineffective. The
development of new methods for processing
measurement information is driven by the needs of
modern measurement practice, which is characterized

by the increasing complexity of measurement tasks and
measurement devices.

The expansion of data processing capabilities and
measurement results is closely related to the
development of measurement methodology, the
improvement of mathematical methods, as well as the
widespread implementation of computing technology in
the measurement chain, including microcontrollers.

2. Problem Statement

For a measuring instrument, one of the most
important are the metrological characteristics that affect
the measurement result and the accuracy of this result.
One such characteristic is the nominal static
transformation function of the measuring device (other
names include transformation equation, calibration
characteristic). It establishes the dependence y = F(x) of

the informative parameter of the output signal y from the
value of the informative parameter of the input signal x.
Usually, the transformation function is required to
be linear within the working measurement range.
However, quite often when solving practical
measurement problems, one has to deal with measuring
devices that have a nonlinear transformation function. For
example, analog electronic megohmmeters in the mode of
measuring high resistances (units and tens of megohms)
have a reverse non-uniform scale. The sensitivity of the
device in different sections of such a scale will vary,
which is not entirely convenient both when taking
readings and when assessing the measurement result's
error. Individual elements of the measuring circuit, such
as semiconductor thermistors or diodes, also have
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significantly nonlinear operating characteristics, which
affects the transformation function of the device.
Sometimes, it is possible to approximate the
transformation function to a linear one using circuit
design solutions, but this is not always the case.
Typically, in practice, the transformation function
is approximated by a linear dependence ¥y =a+bx, the

unknown coefficients a and b are found using the least
squares method. However, in cases where the
nonlinearity of the transformation function is
significant, such an approach does not yield the desired
results, as a large systematic error arises due to the
deviation of the nominal transformation function from
the actual one (Fig. 1).
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Fig. 1. Linearization errors of the transformation function

To reduce this error, one can attempt to convert the
nonlinear function y=F(x) into a linear form

y =a+bx by changing the variables

y=0(y), X=y(x)

with subsequent determination of the coefficients a and
b of the linear function using the least squares method
[1]. However, in this case, it is necessary to know in
advance what the nonlinear transformation function
looks like, that is, to have prior information about the
structure of the mathematical model of the measurement
device. The justified choice of the type of this nonlinear
dependence is quite a complex task, which is poorly
amenable to formalization and is carried out based on
known physical laws or the personal experience of the
specialist solving the problem.

One of the well-known approaches to reducing the
impact of the nonlinearity of the transformation function
on the measurement result error, which can be
considered universal, is the algorithmic correction of the
transformation function. A special correction device is
connected in series with the measuring instrument,
which performs the inverse transformation with respect

to its characteristic X=F *(y). As a result of such

correction, we obtain an estimate x of the input signal

(measured quantity) x, and the resulting transformation
function becomes linear. An important additional
condition is the invariance of such a converter to the
form of the nonlinear function being corrected, that is,
the ability to adapt to any transformation function.

The aim of this article is to investigate an adaptive
system for correcting the transformation function of a
measurement device, which will utilize an artificial
neural network as a correction device and ensure the
linearity of the transformation function across the entire
range of possible values of the measured input quantity.

3. Correction of the transformation
function using an artificial neural network

Artificial  neural  networks  (ANN) are
computational structures built on the principles of
biological neural networks formed by the cells of the
brains of living organisms. A distinctive feature of
ANNSs is their ability to learn, which has made them a
priority area of research in the field of artificial
intelligence. The theory of ANNSs has been rapidly
developing in recent years, contributing to an increased
interest in their application across various fields of
science, technology, economics, medicine, military
affairs, and more. Due to properties such as high
reliability of operation, noise immunity, ability to
generalize, and the possibility of implementing complex
multidimensional mappings, neural networks are widely
used for pattern recognition and classification, decision-
making and  control,  optimization,  function
approximation, forecasting, filtering, and memory
organization [2-5].

Considering the aforementioned features of ANNS,
particularly its ability to serve as a universal
approximator of complex nonlinear dependencies, it is
most appropriate to use a neural network as a correction
device, as demonstrated in a number of studies [6-10].
Figure 2 shows the structure of such an adaptive
correction system for the transformation function of the
measurement device. The effect of internal and external
random factors on the measurement process is
represented by additive noise &(t) at the output of the

measuring device, where t — current time. The output
signal y(t) is fed into the correction neural network,

which performs the inverse transformation and generates
an estimate of the input signal (measured quantity) X(t).

The training algorithm adjusts the synaptic weight
coefficients of the neural network in such a way as to
ensure the best approximation of its output signal X(t)
to the known value of the input signal x(t). In this
process, the mean squared error of the correction
e(t) = x(t) — X(t) is minimized using one of the known
gradient optimization procedures.
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Fig. 2. Structure of the adaptive system for correcting the nonlinearity of the transformation function of the measuring device

4. Correction device based on a
multilayer perceptron

A multilayer feedforward neural network, or
multilayer perceptron (MLP), consists of several layers of
formal neurons connected in sequence: an input layer,
hidden layers, and an output layer (see Fig. 3). Neurons
within the same layer are not connected to each other; the
outputs of the neurons in the n-th layer are fed into the
inputs of the neurons in the next n+1- th layer. The
input vector signal is fed into the inputs of the neurons in
the first layer, and the output signals of the last layer form
the output vector signal of the network. The configuration
of MLP is determined by the number of layers, the
number of neurons in each layer, and the activation
functions of the neurons. Training involves adjusting the
connection weights between neurons in such a way as to
ensure the required values of the output signals of the
network. During the training process, a multilayer neural
network is capable of identifying complex dependencies
between input and output signals and performing
generalization. When using the supervised learning, the
dataset on which the neural network is trained must be
labeled or marked, meaning it should contain the correct
answers (outputs of the neural network) for each input
sample of the training sequence.

Back propagation of error signal

Input 1
Input 2

Input n

Input layer

Hidden layers Output layer

o
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Fig. 3. Multilayer perceptron

It is proposed to implement a device for correcting
the nonlinearity of the transformation function of the
measurement device based on a three-layer perceptron,
the structure of which is shown in Fig. 4.

The output layer of the perceptron consists of one
neuron that generates the signal X as a weighted sum of
the output signals of the neurons in the hidden layer

n

J:
where Oj is the output signal of the j-th neuron in
the hidden layer; V;j is the synaptic weight of the j-th
input of the output layer neuron; n is the number of
neurons in the hidden layer.

The hidden layer of the MLP is formed by neurons

with sigmoid activation functions. Each neuron of this
layer is described by the following equations

0= 1—3- '
l+e ™
m
i=

where O; is the output signal of the i-th neuron in
the input layer; Wj; is the synaptic weight of the i-th
input of the j-th neuron in the hidden layer; m is the
number of neurons in the input layer.

The input layer of neurons is formed by the input
signals of the neural network, which in the context of
the problem under consideration are the output signal of
the measuring device y and a constant signal equal to
one, introduced to account for the constant offset.

Fig. 4. MLP-corrector

MLP training is based on minimizing the mean
squared error

E- 23 0= 22 (0-30F
k=1

k=1

by adjusting the synaptic weight coefficients of neurons
using gradient methods. The two most popular learning
algorithms are:
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— back propagation;

— Levenberg-Marquardt algorithm, which is a
combination of the Gauss-Newton method and the
gradient descent method.

In our case, it is more appropriate to use the
Levenberg-Marquardt algorithm for training the MLP,
as it has a higher convergence speed compared to other
gradient optimization methods.

The dataset for the training procedure of the
correction neural network will consist of pairs of values
{<y(1), x(1)>, <y(2), x(2)> ... <y(N), x(N)>},
obtained during the calibration of the measurement
device by applying a reference signal x(k) and
receiving the corresponding output signal value y(k).

5. Correction device based on radial
basis function neural network

Another universal approximator of complex
functional dependencies is the radial basis function
neural network (RBFN). The architecture of such a
network consists of three layers: an input layer, which
receives the vector of input signals; a hidden layer,
composed of radial-type neurons; and an output layer,
which forms a weighted linear combination of the
outputs of the hidden layer neurons (Fig. 5).

Ci, G

Fig. 5. RBFN- corrector

If the Gaussian function is used as the activation
function of the hidden layer neurons, then the equation
of such a transformer will have the form

X = ivi exp(— MJ 3)

i=1 ZGi

where c; is the center of the i-th basis function, and o;

is its radius (width). The training of RBFN involves
determining the linear weight coefficients V; of the

output neuron, centers c¢; and widths o; hidden layer

neurons. In this case, the following options are possible:

1) fixed values for the centers and widths of the
hidden layer neurons are set, and the weight coefficients
of the output neuron are determined through training;

2) the centers and widths are determined through
self-learning (most often using clustering methods), and
then the weights of the output neuron are adjusted to
minimize the objective function (2);

3) all network parameters are determined using
supervised learning.

6. Results of experimental studies

To study the properties of the proposed neural
network systems for correcting the transformation
functions of measurement devices, computer modeling
was performed in the MATLAB environment using the
Neural Network Toolbox. During the modeling process,
the influence of the type of nonlinearity on the quality
of the correction of the transformation function was
investigated, while the following types of functions
were used for modeling the nonlinear measurement
device [1]:

1) sinusoidal y =sin(ax+Db);

2) power y:axb;
3) hyperbolic y=a+b/x;

4) fractional-linear | y =

a+bx’
X

5) fractional-linear Il y = ;
a+bx

6) exponential | y=ae™;

7) exponential 11 y =ae”*;

8) logarithmic | y=a+blnx;
9) logarithmic Il y=a+b/Inx.

Additive noise at the output of the measurement
device was modeled as a Gaussian random process with
a zero mean and a standard deviation of 0.005. The
quality of the correction was assessed by the root mean
square deviation of the corrected signal estimate from
its true value

=L S k) = () P
3‘\/N_1kz_l(x(k) X)) (4)

For comparison, modeling of a similar correction
system for the transformation function based on a 5th
degree polynomial approximator was carried out. The
modeling results are presented in Figures 6-11 and in
Table 1.

Nonlinear transformation function Corrected transformation function POLY
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Fig. 6. Correction of the sinusoidal transformation function
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Fig. 7. Correction of the power transformation function
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Table 1 — Root mean square error of correction for various nonlinear functions and correctors

Root mean square correction error
Function Formula
POLY MLP RBFN
1. Sinusoidal y =sin(0,3x-1,7) 0,0615 0,0752 0,0700
2. Power y=2.x"1° 0,2621 0,1992 0,1983
3. Hyperbolic y=5+3/x 0,1360 0,1374 0,1414
. . 1
4, Fractional-linear | y—m 0,0974 0,0985 0,1016
5. Fractional-linear |1 y= X 0,1076 0,1061 0,1053
0,5+1,2x
6. Exponential | y=5-g70°* 0,2160 0,1870 0,1611
7. Exponential 11 y= 5.e05/ 0,1780 0,1727 0,1590
8. Logarithmic | y=5+3-Inx 0,0704 0,0715 0,0911
9. Logarithmic 11 y=5+3/Inx 0,3099 0,2814 0,2849
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The points of the training sample are marked with  similar system based on a polynomial approximator

circles on the graph of the function. shows that the root mean square error of correction for
some types of nonlinear transformation functions differs
Standard error of correction insignificantly between traditional and neural network

correctors, while for others, the neural network
approach demonstrates better results.

From this, it can be concluded that the simulation
results fully confirm the operability of the proposed
adaptive system for correcting the nonlinearity of
transformation functions based on ANN and are
consistent with theoretical assumptions. The advantage
1 | | of the proposed approach is the invariance of neural
- 5 ¢ 7 8 s network correctors to the type of nonlinear

SPOLY:MMLE WRORN characteristic of the measurement device and the ability
to synthesize such systems through training, without
involving complex design methods. This significantly
expands the application possibilities of such systems in
metrological practice, particularly in the channels of

The analysis of the simulation results presented in  information-measurement systems, where it is quite
Figs. 6-11 and in Table 1 indicates that the proposed  straightforward to implement methods of digital
neural network system for correcting the nonlinearity of ~ processing of measurement information.
the transformation function of the measurement device The use of the proposed correction based on a
based on MLP and RBFN is suitable for correcting a  neural network approach will significantly reduce the
fairly wide class of nonlinear transformation functions  systematic ~measurement error caused by the
encountered in measurement tasks. Comparison of the  discrepancy between the nominal and actual
characteristics of neural network correctors and a transformation functions of the measurement device.

Fig. 11. Correction errors

7. Conclusions
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BuxopucTaHHs IITYYHUX HEHPOHHUX Mepesk 1Jisl 3MEHIICHHS HeliHiliHOCTI BUMIPIOBAILHUX NIPUCTPOIB
C.M. Agakin, C.O. [losrononuii, I.O. Momenko, O.B. 3anoposxers

AHoTanist

V crarti po3riasHYTO METOAM 3MEHILICHHs BIUIMBY HENIHIHHOCTI (YHKIII MEpeTBOPEHHS BHMIPIOBAJbHUX MPHIANIiB HA
TOYHICTh PEe3yJIbTAaTiB BHMIPIOBaHb I[UIIXOM 3aCTOCYBaHHS [OAAaTKOBOTO IMPUCTPOIO KOPEKIii, 10 peasi3ye 3alexkHICTb,
obepHeHy a0 (yHKIII mepeTBOpeHHS. METO MOCTIKEHHS € BUBYCHHS MOMKIMBOCTCH BHKOPHUCTAHHS B SKOCTI TaKHX
KOPEKTOPIiB IITYYHHUX HEHPOHHHX MEpexk, 30KpeMa 0araTomIapoBHX MEPCENTPOHIB 1 MEpeX pamialbHUX Oa3uCHHUX (QYHKIIIH.
EdexTHBHICT 3aIpONIOHOBAaHMX METOAIB KOPEKIii (YHKIi NepeTBOPEHHs JOCIIHKEHO NUIIXOM IMITAIIfHOTO KOMIT' IOTEPHOTO
MOZENIOBAaHHS 3 BUBUCHHSIM BIUIMBY THITy HENIHIIHOCTI Ha SIKICTh Takoi Kopekiii. 3miiCHeHO MNOpIBHSIBHUN aHam3 3
TPagUIiiHIMHU MiJXOJaMH, 30KpeMa KOPEKTOPOM Ha OCHOBI MOJIHOMiadbHOI ampokcumariii. Pe3ynbratd MoIetOBaHHS
MOKa3yl0Th, IO TOYHICTh HEHPOMEPEKEBUX KOPEKTOPIB MOPIBHSHHA 3 TOYHICTIO IMOJIHOMIaJbHUX KOPEKTOPIB, a B JESIKHX
BHUINAJKaX HaBiTh mepeBepiuye ix. Lle BifKkpuBae NEpCHEKTHBH IIMPLIOrO 3aCTOCYBAHHSA Y BHUMIpIOBAJbHIH TEXHIIl TaKhX
Cy4JacHHX METO/IiB 00pOOKH BUMIPIOBANBHOT iH(pOpMaLil, K ITYy4YHI HEHPOHHI MEePEexi.

KurouoBi cjioBa: HemiHIHHICTB, KOPEKILis, (YHKIS TMEpPEeTBOPEHHS, LITyYHAa HEHpOHHA MepeXa, OaraTromapoBHit
MEPIENTPOH, pagianbHa 0a3ucHA HEHPOHHA Mepeka, HaBYaHHS.
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