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Abstract
The  article  discusses  methods  for  reducing  the  impact  of  nonlinearity  in  the  transformation  function  of  measurement

devices on the accuracy of measurement results by applying an additional correction device that implements a dependency that is
inverse to the transformation function. The aim of the research is to explore the possibilities of using artificial neural networks,
specifically  multilayer  perceptrons  and  radial  basis  function  networks,  as  such  correctors.  The  effectiveness  of  the  proposed
correction methods for the transformation function has been investigated through simulation computer modeling, examining the
impact  of  the  type  of  nonlinearity  on  the  quality  of  such  correction.  A  comparative  analysis  was  carried  out  with traditional
approaches,  specifically  a  corrector  based  on  polynomial  approximation.  The  simulation  results  indicate  that  the  accuracy  of
neural  network  correctors  is  comparable  to  that  of  polynomial  correctors,  and  in  some  cases,  even  superior.  This  opens  up
prospects  for  a  broader  application  of  such  modern  measurement  data  processing  methods  as  artificial  neural  networks  in
measurement technology.

Keywords: nonlinearity,  correction,  transformation function,  artificial  neural  network,  multilayer perceptron,  radial  basis
neural network, training.

1. Introduction
The  last  few  decades  have  been  marked  by  the

rapid  development  of  information  technologies,  which
have radically  and fundamentally  changed not  only  the
usual  way  of  human  life  but  also  entire  sectors  of  the
economy in most developed countries of the world. An
undeniable  achievement  of  scientific  thought  has  been
the  successes  in  the  development  of  artificial
intelligence.  Research  in  the  field  of  artificial  neural
networks, deep learning, and fuzzy systems has enabled
the  implementation  of  quite  complex  methods  of
mathematical processing and analysis of large data sets,
as  well  as  solving  a  number  of  classification,
optimization,  management,  pattern  recognition,
identification,  approximation  of  complex  nonlinear
dependencies, diagnostics, and other tasks.

The  field  of  measurements  and  measurement
technology is also not left behind and is actively trying to
utilize more effective methods of information processing
that  will  enhance  the  accuracy  and  reliability  of
measurement results. The role of such methods becomes
increasingly  important  with  the  complexity  of
measurements and the rising demands for their accuracy.

New directions in applied mathematics, such as the
theory  of  artificial  neural  networks,  interval  analysis,
robust and nonparametric statistics, fuzzy logic, wavelet
analysis,  and  several  others,  provide  a  mathematical
framework  for  solving  those  problems  for  which
classical  data  processing  methods  are  ineffective.  The
development  of  new  methods  for  processing
measurement  information  is  driven  by  the  needs  of
modern  measurement  practice,  which  is  characterized

by the increasing complexity of measurement tasks and
measurement devices.

The expansion of  data  processing  capabilities  and
measurement  results  is  closely  related  to  the
development  of  measurement  methodology,  the
improvement  of  mathematical  methods,  as  well  as  the
widespread implementation of computing technology in
the measurement chain, including microcontrollers.

2. Problem Statement
For  a  measuring  instrument,  one  of  the  most

important  are  the  metrological  characteristics  that  affect
the  measurement  result  and  the  accuracy  of  this  result.
One  such characteristic  is  the  nominal  static
transformation  function  of  the  measuring  device  (other
names  include  transformation  equation,  calibration
characteristic). It establishes the dependence )(xFy =  of
the informative parameter of the output signal y from the
value of the informative parameter of the input signal x.

Usually,  the  transformation  function  is  required  to
be  linear  within  the  working  measurement  range.
However,  quite  often  when  solving  practical
measurement  problems,  one  has  to  deal  with  measuring
devices that have a nonlinear transformation function. For
example, analog electronic megohmmeters in the mode of
measuring high resistances  (units  and tens  of  megohms)
have  a  reverse  non-uniform scale.  The  sensitivity  of  the
device  in  different  sections  of  such  a  scale  will  vary,
which  is  not  entirely  convenient  both  when  taking
readings  and  when  assessing  the  measurement  result's
error.  Individual  elements  of  the measuring circuit,  such
as  semiconductor  thermistors  or  diodes,  also  have
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significantly nonlinear operating characteristics, which 
affects the transformation function of the device. 
Sometimes, it is possible to approximate the 
transformation function to a linear one using circuit 
design solutions, but this is not always the case. 

Typically, in practice, the transformation function 
is approximated by a linear dependence bxay +=ˆ , the 
unknown coefficients a and b are found using the least 
squares method. However, in cases where the 
nonlinearity of the transformation function is 
significant, such an approach does not yield the desired 
results, as a large systematic error arises due to the 
deviation of the nominal transformation function from 
the actual one (Fig. 1). 

 
Fig. 1. Linearization errors of the transformation function 

 
To reduce this error, one can attempt to convert the 

nonlinear function )(xFy =  into a linear form 
xbay ~~ +=  by changing the variables 

),(~ yy ϕ=   )(~ xx ψ=  
with subsequent determination of the coefficients a and 
b of the linear function using the least squares method 
[1]. However, in this case, it is necessary to know in 
advance what the nonlinear transformation function 
looks like, that is, to have prior information about the 
structure of the mathematical model of the measurement 
device. The justified choice of the type of this nonlinear 
dependence is quite a complex task, which is poorly 
amenable to formalization and is carried out based on 
known physical laws or the personal experience of the 
specialist solving the problem. 

One of the well-known approaches to reducing the 
impact of the nonlinearity of the transformation function 
on the measurement result error, which can be 
considered universal, is the algorithmic correction of the 
transformation function. A special correction device is 
connected in series with the measuring instrument, 
which performs the inverse transformation with respect 
to its characteristic )(ˆ 1 yFx −= . As a result of such 
correction, we obtain an estimate x̂  of the input signal 

(measured quantity) x, and the resulting transformation 
function becomes linear. An important additional 
condition is the invariance of such a converter to the 
form of the nonlinear function being corrected, that is, 
the ability to adapt to any transformation function. 

The aim of this article is to investigate an adaptive 
system for correcting the transformation function of a 
measurement device, which will utilize an artificial 
neural network as a correction device and ensure the 
linearity of the transformation function across the entire 
range of possible values of the measured input quantity. 

3. Correction of the transformation 
function using an artificial neural network 

Artificial neural networks (ANN) are 
computational structures built on the principles of 
biological neural networks formed by the cells of the 
brains of living organisms. A distinctive feature of 
ANNs is their ability to learn, which has made them a 
priority area of research in the field of artificial 
intelligence. The theory of ANNs has been rapidly 
developing in recent years, contributing to an increased 
interest in their application across various fields of 
science, technology, economics, medicine, military 
affairs, and more. Due to properties such as high 
reliability of operation, noise immunity, ability to 
generalize, and the possibility of implementing complex 
multidimensional mappings, neural networks are widely 
used for pattern recognition and classification, decision-
making and control, optimization, function 
approximation, forecasting, filtering, and memory 
organization [2-5]. 

Considering the aforementioned features of ANNs, 
particularly its ability to serve as a universal 
approximator of complex nonlinear dependencies, it is 
most appropriate to use a neural network as a correction 
device, as demonstrated in a number of studies [6-10]. 
Figure 2 shows the structure of such an adaptive 
correction system for the transformation function of the 
measurement device. The effect of internal and external 
random factors on the measurement process is 
represented by additive noise )(tξ  at the output of the 
measuring device, where t – current time. The output 
signal )(ty  is fed into the correction neural network, 
which performs the inverse transformation and generates 
an estimate of the input signal (measured quantity) ).(ˆ tx  

The training algorithm adjusts the synaptic weight 
coefficients of the neural network in such a way as to 
ensure the best approximation of its output signal )(ˆ tx  
to the known value of the input signal ).(tx  In this 
process, the mean squared error of the correction 

)(ˆ)()( txtxte −=  is minimized using one of the known 
gradient optimization procedures. 
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Fig. 2. Structure of the adaptive system for correcting the nonlinearity of the transformation function of the measuring device 

 
4. Correction device based on a 

multilayer perceptron 
A multilayer feedforward neural network, or 

multilayer perceptron (MLP), consists of several layers of 
formal neurons connected in sequence: an input layer, 
hidden layers, and an output layer (see Fig. 3). Neurons 
within the same layer are not connected to each other; the 
outputs of the neurons in the n-th layer are fed into the 
inputs of the neurons in the next 1+n - th layer. The 
input vector signal is fed into the inputs of the neurons in 
the first layer, and the output signals of the last layer form 
the output vector signal of the network. The configuration 
of MLP is determined by the number of layers, the 
number of neurons in each layer, and the activation 
functions of the neurons. Training involves adjusting the 
connection weights between neurons in such a way as to 
ensure the required values of the output signals of the 
network. During the training process, a multilayer neural 
network is capable of identifying complex dependencies 
between input and output signals and performing 
generalization. When using the supervised learning, the 
dataset on which the neural network is trained must be 
labeled or marked, meaning it should contain the correct 
answers (outputs of the neural network) for each input 
sample of the training sequence. 

 

 
Fig. 3. Multilayer perceptron 

 
It is proposed to implement a device for correcting 

the nonlinearity of the transformation function of the 
measurement device based on a three-layer perceptron, 
the structure of which is shown in Fig. 4. 

The output layer of the perceptron consists of one 
neuron that generates the signal x̂  as a weighted sum of 
the output signals of the neurons in the hidden layer 

,ˆ
1
∑
=

=
n

j
jjOVx                       (1) 

where Oj  is the output signal of the j-th neuron in 
the hidden layer; Vj  is the synaptic weight of the j-th 
input of the output layer neuron; n is the number of 
neurons in the hidden layer. 

The hidden layer of the MLP is formed by neurons 
with sigmoid activation functions. Each neuron of this 
layer is described by the following equations 
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where Oi  is the output signal of the i-th neuron in 
the input layer; Wij  is the synaptic weight of the i-th 
input of the j-th neuron in the hidden layer; m is the 
number of neurons in the input layer. 

The input layer of neurons is formed by the input 
signals of the neural network, which in the context of 
the problem under consideration are the output signal of 
the measuring device y and a constant signal equal to 
one, introduced to account for the constant offset. 
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Fig. 4. MLP-corrector 

 
MLP training is based on minimizing the mean 

squared error 

( )∑∑
==

−==
N

k

N

k
kxkxkeE

1

2

1

2 )(ˆ)(
2
1)(

2
1       (2) 

 
by adjusting the synaptic weight coefficients of neurons 
using gradient methods. The two most popular learning 
algorithms are: 
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– back propagation; 
– Levenberg-Marquardt algorithm, which is a 

combination of the Gauss-Newton method and the 
gradient descent method. 

In our case, it is more appropriate to use the 
Levenberg-Marquardt algorithm for training the MLP, 
as it has a higher convergence speed compared to other 
gradient optimization methods. 

The dataset for the training procedure of the 
correction neural network will consist of pairs of values 

{<y(1), x(1)>, <y(2), x(2)> … <y(N), x(N)>}, 
obtained during the calibration of the measurement 
device by applying a reference signal x(k) and 
receiving the corresponding output signal value y(k). 

5. Correction device based on radial 
basis function neural network 

Another universal approximator of complex 
functional dependencies is the radial basis function 
neural network (RBFN). The architecture of such a 
network consists of three layers: an input layer, which 
receives the vector of input signals; a hidden layer, 
composed of radial-type neurons; and an output layer, 
which forms a weighted linear combination of the 
outputs of the hidden layer neurons (Fig. 5). 

Σy
x̂

Vi

ci, σi

 
Fig. 5. RBFN- corrector 

 
If the Gaussian function is used as the activation 

function of the hidden layer neurons, then the equation 
of such a transformer will have the form 
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where ic  is the center of the i-th basis function, and iσ  
is its radius (width). The training of RBFN involves 
determining the linear weight coefficients iV  of the 
output neuron, centers ic  and widths iσ  hidden layer 
neurons. In this case, the following options are possible: 

1) fixed values for the centers and widths of the 
hidden layer neurons are set, and the weight coefficients 
of the output neuron are determined through training; 

2) the centers and widths are determined through 
self-learning (most often using clustering methods), and 
then the weights of the output neuron are adjusted to 
minimize the objective function (2); 

3) all network parameters are determined using 
supervised learning. 

6. Results of experimental studies 
To study the properties of the proposed neural 

network systems for correcting the transformation 
functions of measurement devices, computer modeling 
was performed in the MATLAB environment using the 
Neural Network Toolbox. During the modeling process, 
the influence of the type of nonlinearity on the quality 
of the correction of the transformation function was 
investigated, while the following types of functions 
were used for modeling the nonlinear measurement 
device [1]: 

1) sinusoidal )sin( baxy += ; 

2) power baxy = ; 
3) hyperbolic xbay /+= ; 

4) fractional-linear I 
bxa

y
+

=
1 ; 

5) fractional-linear II 
bxa

cxy
+

= ; 

6) exponential I bxaey = ; 

7) exponential II xbaey /= ; 
8) logarithmic I xbay ln+= ; 
9) logarithmic II xbay ln/+= . 
Additive noise at the output of the measurement 

device was modeled as a Gaussian random process with 
a zero mean and a standard deviation of 0.005. The 
quality of the correction was assessed by the root mean 
square deviation of the corrected signal estimate from 
its true value 
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For comparison, modeling of a similar correction 

system for the transformation function based on a 5th 
degree polynomial approximator was carried out. The 
modeling results are presented in Figures 6-11 and in 
Table 1. 
 

 

 
Fig. 6. Correction of the sinusoidal transformation function 
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Fig. 7. Correction of the power transformation function 

 

 

 
Fig. 8. Correction of the fractional-linear II transformation 

function

 

 
Fig. 9. Correction of the exponential I transformation function 
 

 

 
Fig. 10. Correction of the logarithmic II transformation 

function 
 
 

Table 1 – Root mean square error of correction for various nonlinear functions and correctors 

Function Formula
Root mean square correction error

POLY MLP RBFN

1. Sinusoidal

2. Power

3. Hyperbolic

4. Fractional-linear I

5. Fractional-linear II

6. Exponential I

7. Exponential II

8. Logarithmic I

9. Logarithmic II

( )7,13,0sin −= xy

5,12 −⋅= xy

xy 35+=

x
y

1,005,0
1
+

=

x
xy

2,15,0
10
+

=

xey ⋅−⋅= 5,05

xey 5,05 ⋅=

xy ln35 ⋅+=

xy ln35+=

0,0615

0,2621

0,1360

0,0974

0,1076

0,2160

0,1780

0,0704

0,3099

0,0752

0,1992

0,1374

0,0985

0,1061

0,1870

0,1727

0,0715

0,2814

0,0700

0,1983

0,1414

0,1016

0,1053

0,1611

0,0911

0,2849

0,1590
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The points of the training sample are marked with 
circles on the graph of the function. 
 

 
Fig. 11. Correction errors 

 
7. Conclusions 
The analysis of the simulation results presented in 

Figs. 6-11 and in Table 1 indicates that the proposed 
neural network system for correcting the nonlinearity of 
the transformation function of the measurement device 
based on MLP and RBFN is suitable for correcting a 
fairly wide class of nonlinear transformation functions 
encountered in measurement tasks. Comparison of the 
characteristics of neural network correctors and a 

similar system based on a polynomial approximator 
shows that the root mean square error of correction for 
some types of nonlinear transformation functions differs 
insignificantly between traditional and neural network 
correctors, while for others, the neural network 
approach demonstrates better results. 

From this, it can be concluded that the simulation 
results fully confirm the operability of the proposed 
adaptive system for correcting the nonlinearity of 
transformation functions based on ANN and are 
consistent with theoretical assumptions. The advantage 
of the proposed approach is the invariance of neural 
network correctors to the type of nonlinear 
characteristic of the measurement device and the ability 
to synthesize such systems through training, without 
involving complex design methods. This significantly 
expands the application possibilities of such systems in 
metrological practice, particularly in the channels of 
information-measurement systems, where it is quite 
straightforward to implement methods of digital 
processing of measurement information. 

The use of the proposed correction based on a 
neural network approach will significantly reduce the 
systematic measurement error caused by the 
discrepancy between the nominal and actual 
transformation functions of the measurement device. 
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Використання штучних нейронних мереж для зменшення нелінійності вимірювальних пристроїв 
С.М. Авакін, С.О. Довгополий, І.О. Мощенко, О.В. Запорожець 

Анотація 
У статті розглянуто методи зменшення впливу нелінійності функції перетворення вимірювальних приладів на 

точність результатів вимірювань шляхом застосування додаткового пристрою корекції, що реалізує залежність, 
обернену до функції перетворення. Метою дослідження є вивчення можливостей використання в якості таких 
коректорів штучних нейронних мереж, зокрема багатошарових персептронів і мереж радіальних базисних функцій. 
Ефективність запропонованих методів корекції функції перетворення досліджено шляхом імітаційного комп’ютерного 
моделювання з вивченням впливу типу нелінійності на якість такої корекції. Здійснено порівняльний аналіз з 
традиційними підходами, зокрема коректором на основі поліноміальної апроксимації. Результати моделювання 
показують, що точність нейромережевих коректорів порівнянна з точністю поліноміальних коректорів, а в деяких 
випадках навіть перевершує їх. Це відкриває перспективи ширшого застосування у вимірювальній техніці таких 
сучасних методів обробки вимірювальної інформації, як штучні нейронні мережі. 

Ключові слова: нелінійність, корекція, функція перетворення, штучна нейронна мережа, багатошаровий 
перцептрон, радіальна базисна нейронна мережа, навчання. 


