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Abstract

In the paper, we present the multivariate location-scale model connected to the multivariate Birge ratio method, a new
approach to model the dark uncertainty which is usually present when the results of individual studies are pooled together. In the
empirical illustration, the approach is applied to the measurement results used to study the presence of the effectiveness of the
hypertension treatment. The findings are compared to the ones obtained when the multivariate random effects model is used.
Both models confirm that the hypertension treatments can lower systolic blood pressure and diastolic blood pressure as well as
lead to considerable reduction of the risks of cardiovascular disease and stroke. Furthermore, the multivariate Birge ratio method
produces more precise estimators of the overall mean vector by resulting in considerably smaller standard errors and narrower

confidence intervals.

Keywords: Dark uncertainty; multivariate Birge ratio method; multivariate location-scale model; multivariate random

effects model.

1. Introduction

Multivariate random effects model and multivariate
location-scale model are the comonly used approaches for
assessing and modeling dark uncertainty in multivariate
measurements (see Jackson et al. (2010), Gasparrini et al.
(2012), Jackson et al. (2020), Bodnar and Bodnar (2024b),
Bodnar and Bodnar (2025)). The multivariate random
effects model suggests an additive adjustment of the
reported uncertainties, while the multivariate location-scale
model is connected to the Birge ratio method and adjusts
the reported uncertainties in the multiplicative way. We
apply both models to the data which measure the
effectiveness of the hypertension treatment and compare
their ability to assess the dark uncertainty.

The multivariate random effects model generalizes
the univariate approach which is mostly used to conduct
meta-analysis in medicine, chemistry, and metrology
(see, e.g., Hardy and Thompson (1996), Rukhin (2013),
Bodnar et al. (2016), Turner et al. (2015), Bodnar et al.
(2017), Guolo and Varin (2017), Veroniki et al. (2019)).
The multivariate location-scale model together with the
Birge ratio method as developed in Bodnar and Bodnar
(2025) extends the univariate location-scale model and it
is preferable in metrology and physics (see Birge (1932),
Bodnar and Elster (2014), Weise and Wdger (2000),
Tiesinga et al. (2021), Bodnar and Eriksson (2023)).
Recently, using Bayesian model selection, Bodnar and
Eriksson (2023) conclude that the Birge ratio method
outperforms the random effects models based on data
used in the determination of physical constants.

In this paper, we contribute to the existent literature
by comparing the multivariate location-scale model
connected to the Birge ratio method and the multivariate

random effects model. In the comparison study, we
analyse the ability of both models to estimate the overall
mean vector for data used to study the effectiveness of the
hypertension treatment. Both approaches find that the
conducted hypertension treatment lowers both systolic
blood pressure and the diastolic blood pressure and
considerably reduces risks of cardiovascular disease and
stroke. Moreover, the application of the multivariate Birge
ratio method to the considered data leads to more precise
estimators of the overall mean vector by producing
considerably smaller standard errors and narrower
confidence intervals in comparison to the ones obtained
when the multivariate random effects model is used.

The rest of the paper is organized as follows. The
multivariate random effects model and the multivariate
location-scale model together with the Birge ratio
method are presented in Section 2, while they are
applied to the data dealing with the effectiveness of the
hypertension treatment in Section 3. Final remarks are
provided in Section 4.

2. Methods for modeling multivariate
dark uncertainty

We consider a study in which p features are
measured simultaneously. Let x; be the p-dimensional
vector of the measurement results from the i-th study for
i =1,...,n which is reported together with the covariance
matrix U;, the multivariate measure of uncertainty in the
i-th observation vector.

The multivariate random effects model adjusts the
reported multivariate uncertainties additively and it is
defined by

Xi=H + i + & with 2; NNP(O,‘P) and g; NNp(O,Ui), (1)
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mutually independent. Moreover, 4; and &; are assumed
to be normally distributed. The parameter vector W is the
overall mean vector, the main parameter of the model,
while the matrix ¥ is the between-study covariance
matrix, the nuisance parameter of the model (1) that is
used to assess the multivariate dark uncertainty.
Different methods are developed in the literature to
estimate p and W. While Gasparrini et al. (2012) and
Jackson et al. (2013) discuss the frequentist approaches,
Bodnar and Bodnar (2023), Bodnar and Bodnar
(2024a), and Bodnar and Bodnar (2024b) develop
Bayesian methods, recently.

Another method to adjust multivariate
measurements is based on the multivariate location-

scale model, a generalization of the univariate
approach, expressed as
Xi=uht B&‘i with &~ Np(O,Ui), (2)

where the measurement errors ¢4,...,&, are assumed to
be mutually independent. The parameter vector p is
the overall mean vector and it usually presents the
main parameter of the model, similarly to the
multivariate random effects model. The matrix B is a
diagonal matrix with entries by,...,b,. This matrix is
used to adjust the reported unceratinties from the
individual studies in the multiplicative way. If p = 1,
the multivariate location-scale model becomes the
univariate location-scale model and the multivariate
Birge ratio method connected to the multivariate
location-scale model becomes the univariate Birge
ratio method, previously studied in Birge (1932),
Bodnar and Elster (2014), Bodnar and Eriksson
(2023), among others.

The multivariate Birge ratio model has recently
been developed in Bodnar and Bodnar (2025), who
derive the maximum likelihood estimator for the
parameters 1 and B (or b) of model (2). Let b = (b,
,-.,0p)T be the vector of the diagonal elements of the

matrix B and define b = (by%,...,b;')" as the vector
which consist of the inverses of the diagonal elements
of B. Then, we get

(i) The maximum likelihood estimator for B is given by

B = diag(g‘l), 3

where b is a vector with positive elements that solves
the following system of quadratic equations

bO(Qb) =1, (4)
with

1v 1v 1v T
Q= ;ZAiUi_lAi —;Z 4,071 (;Z Ui_1> ;Z u;'a,
i=1 i=1 i=1 i=1

where A; = diag(x;), i.e., a diagonal matrix with
diagonal elements equal to the corresponding elements
of the vector x; and 1, is the p-dimensional vector of
ones. The symbol © denotes the Hadamard product.

(i) The maximum likelihood estimator for [ is given
by

i =%(B)=B(ZL,Ui") T U'B . (5)

Moreover, using the generalized likelihood ratio
approach, Bodnar and Bodnar (2025) derive asymptotic
marginal confidence intervals for each component of
the overall mean vector p which for the j-th component
is given by

C(1y) = [ = waayy2/ o B + Uy 2/ djs] (6)

where ug is the p-quantile of the standard normal
distribution, f; is the j-th element of i, and dj; is the j-

th diagonal element of B(X1-, U,-‘l)_lf?.

It is noted that the system of quadratic equations
(4) cannot be solved analytically in general. One of
possible methods to find the solution of (4) is the usage
of the Buchberger algorithm which is based on the
Grobner basis and is implemented in Mathematica (see
Buchberger and Winkler (1998), Buchberger (2001),
Cox et al. (2015)). However, when p = 2, the system of
quadratic equations (4) can be rewritten as

{Q11l§12~+ Q1251l~;2 =1, 0
q21b1by + q22b3 = 1,

where g;, are the elements of Q for jm = {1,2} with g4,
= ;. Then, the unique solution of (7) consisting of

positive elements in b, is given by

= 1

1 =
by =———=,bp=—————. (8)
q q
\/q_ll 1+\/‘I11:22 @ 1+\/‘I11:22
Another important special case corresponds to
diagonal covariance matrices U;. In this case, the

diagonal elements given by

(%Z?:l xi,j/ui,jj)z

1¢n
7 li=1 /i jj

2
_1yn *ij

qjj = i=
T =y

the inverse of j-th element of b becomes

b; = \/aj
and it coincides with the Birge ratio computed for the j-
the measured feature based on a univariate sample of
measurement results for this feature (see Weise and

Wdoger (2000)). Also, the maximum likelihood
estimator of the j-th component of i becomes

~ o MitaXij/uij)
DLV
which is the weighted mean estimator, widely spread in

the univariate case (see Bodnar and Elster (2014),
Strawderman and Rukhin (2010)).

12

© Bodnar O., Bodnar T., 2025



Metrology and Instruments
General metrology

1/2025

MeTponorisa Ta npunagu
BaranbHa MeTponoris

3. Assessing dark uncertainty in
measurements for the effectiveness of the
hypertension treatment

In this section, we apply the multivariate Birge
ratio method to assess the dark uncertainty in real data
which consist of the results of ten studies on the
effectiveness of the hypertension treatment. In each
individual study, four features were measured which are
systolic blood pressure (SBP), diastolic blood pressure
(DBP), cardiovascular disease (CVD), and stroke. We
refer to Wang et al. (2005) for the detailed description
of the considered data. Additionally, three approaches
from frequentist statistics are used to infer the
parameters of the multivariate random effects model.

The measurements of each study together with
reported covariance matrices are available Table 1 of
Riley et al. (2015). Some of the provided covariance
matrices however appear not to be positive definite.
These covariance matrices are adjusted by adding a
diagonal matrix with the same diagonal elements to
ensure that all reported covariance matrices are positive
definite. The aim of the study was to analyze whether
hypertension treatments can lower SBP and DBP and
whether these treatments lead to the significant
reduction of the risks of CVD and stroke. The variables
SBP and DBP are defined as differences between the

mean results in the group who received treatments and
in the placebo group (without treatment), while the
variables CVD and stroke are defined as the logarithms
of the hazard ratio computed for the two groups. As
such, negative values indicate the presence of the
treatment effect. Also, the estimators of the overall
mean vector together with the uncertainties obtained by
the multivariate Birge ratio method and the multivariate
random effects model will be compared in this section.

The maximum likelihood estimates for the
parameters of the multivariate location-scale model (2)
are computed as

~9.584 2719 0 0 0
go|-3682)p_( 0 3302 o0 0

-0.112 |’ 0 0 068 0

—0.400 0 0 0 0955

It is interesting that two diagonal elements of the
matrix B are larger than one, while the other two
values are smaller than one, indicating that the reported
uncertainties in the case of the SBP and DBP
measurements are too small, and they need to be
corrected. This is not the case with the uncertainties
reported in the case of the CVVD and stroke variables.

In Table 1, the estimates of the overall mean
vector | are depicted together with their standard errors
and 95% confidence intervals computed for each
component of u separately.

Table 1: Estimates, standard errors, and 95% confidence intervals for the components of the overall mean vector p obtained by
applying the multivariate Birge ratio method derived in Bodnar and Bodnar (2025), the maximum likelihood and the restrictive
maximum likelihood approaches under the multivariate random effects model described in Gasparrini et al. (2012), and the
method of moments under the multivariate random effects model from Jackson et al. (2013).

M1 (SBP) H. (DBP) M3 (CVD) M4 (stroke)

MLE, Multivariate Birge ratio method
estimate -8.79 -4.001 -0.226 -0.388
stand. error 0.506 0.357 0.046 0.073

conf. inter. [-9.783, -7.801] [-4.701, -3.300] [-0.316, -0.136] [-0.531, -0.244]
MLE, Gasparrini et al. (2012)
estimate -10.177 -4.622 -0.232 -0.323
stand. error 0.867 0.497 0.071 0.093

conf. inter. [-11.875,-8.478] [-5.596,-3.647] [-0.371,-0.093] [-0.505,-0.140]
REML, Gasparrini et al. (2012)
estimate -10.224 -4.646 -0.233 -0.321
stand. error 0.927 0.530 0.071 0.095

conf. inter. [-12.039,-8.408] [-5.685,-3.608] [-0.372,-0.093] [-0.507,-0.134]
Method of moments, Jackson et al. (2013)
estimate -9.923 -4.500 -0.228 -0.335
stand. error 0.634 0.394 0.072 0.107

conf. inter. [-11.166,-8.681]

[-5.267,-3.724]

[-0.369,-0.086] [-0.545,-0.125]
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While no large differences are present in the
estimators of the corresponding elements of the mean
vector, the standard uncertainties differ significantly.

The application of the multivariate Birge ratio
method results in the smallest standard errors and
narrowest confidence intervals. This approach is followed
by the multivariate random effect models with the
parameters estimated by the method of moments. Finally,
the widest confidence intervals are obtained when the
parameters of the multivariate random effects model are
fitted by the restrictive maximum likelihood method.

Independently of the employed model to assess
the presence of the dark uncertainty in the considered
multivariate measurements and the method used to
estimate the parameters in the case of the multivariate
random effects model, all results in Table 1 confirm the
presence of the effectiveness of the hypertension
treatments in all four variables. These findings are in
line with the previous results reported in Riley et al.
(2015) who draw the same conclusion by fitting the
multivariate random effects model to the data.

4. Summary

Combining the measurements of individual studies
and the results of the interlaboratory studies into a single
consensus value is an important topic of modern research
with applications in medicine, chemistry, physics,
metrology, among others. The situation becomes even
more challenging when several features are measured in
each individual study and it is reported together with the
covariance matrix, the multivariate measure of uncertainty.
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TeopeTn4Hi Ta NPAKTHYHI ACHEKTH METOY KOPUI'YBAHHS HeBH3HAYEHOCTi 0araToBUMipHUX BUMIpIOBaHb
3a 101moMoroo koeginienra bipre
O. bonnap, T. bonnap

AHoTanist

V¥ crarti MM OpeacTaBisieMo 6araToOBHMIpHY MOJeb MaciuTaby po3TallyBaHHs, IOB'3aHy 3 0araTOBUMIPHHM METOIOM
koedimienra Bipre, HOBUM MiJX0[OM [0 MOJCIIOBAHHS TEMHOI HEBM3HAYCHOCTI, sIKa 3a3BHYail NPHCYTHS, KOJNHU PE3yJbTaTd
OKpEMHX JOCII/KCHb 00'€MHYIOThC. B emmipuuHiil imrocTpaiiii MiAXil 3aCTOCOBYEThCS O PE3YJbTaTiB BHMIPIOBaHb, IO
BUKOPUCTOBYIOTBCS JJIsl BUBUCHHS €(EKTHBHOCTI JIIKyBaHHS TrinepreH3ii. Pe3ynbTaTn NOpIBHIOIOTBCS 3 pe3ysbTaTaMi,
OTPUMAaHHMH TIPH BUKOPHUCTAaHHI GararoBuMipHOi Mozeni BunaakoBux edexriB. OOHIBI MOeNi MiATBEPIKYIOTh, L0 JTiKyBaHHS
rinmepTeH3ii Mo)Ke 3HU3UTH CUCTOJIYHUH Ta MIacTONIYHHN apTepialbHUIl THUCK, a TAKOX MPU3BECTH IO 3HAYHOTO 3HIKCHHS
PU3HKY CEepLEeBO-CyIMHHUAX 3aXBOPIOBaHb Ta 1HCYNbTy. Kpim Toro, GararoBumipHuii meton koedimienta bipre mae Tounimmi
OL[HKHM 3arajbHOTO CEPEeJHBOr0 BEKTOpA, L0 MPHU3BOAMTH JIO 3HAYHO MEHIIMX CTAHIAPTHHUX NMOMMIIOK Ta BYXKYHMX JOBIPYHX
IHTEepBaJIiB.

KniouoBi c10Ba: TeMHa HEBH3HAUCHICTH; OaraToBUMIpHUH MeTox KoedinieHTta bipre; 6araroBuMipHa MoJenb MacImTady
MICIIsT; 6araTOBHMIipHA MOJICIb BUITAKOBUX C(EKTIB.
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