
Metrology and Instruments 1/2025 Метрологія та прилади 
General metrology Загальна метрологія 
 
 

© Bodnar O., Bodnar T., 2025 11 

UDC 006.91                                                                                                         DOI: 10.30837/2663-9564.2025.1.02    
                                               

THEORETICAL AND PRACTICAL ASPECTS  
OF BIRGE RATIO METHOD FOR ADJUSTING UNCERTAINTY  

IN MULTIVARIATE MEASUREMENTS   
 
O. Bodnar1, T. Bodnar2 
 

1National Institute of Standards and Technology, Gaithersburg, MD 20899-8980, USA and Unit of Statistics,  
 School of Business, Örebro University, SE-701 82 Örebro, Sweden  
2Department of Management and Engineering, Linköping University, SE-581 83 Linköping, Sweden   
 

 
Аbstract 
In the paper, we present the multivariate location-scale model connected to the multivariate Birge ratio method, a new 

approach to model the dark uncertainty which is usually present when the results of individual studies are pooled together. In the 
empirical illustration, the approach is applied to the measurement results used to study the presence of the effectiveness of the 
hypertension treatment. The findings are compared to the ones obtained when the multivariate random effects model is used. 
Both models confirm that the hypertension treatments can lower systolic blood pressure and diastolic blood pressure as well as 
lead to considerable reduction of the risks of cardiovascular disease and stroke. Furthermore, the multivariate Birge ratio method 
produces more precise estimators of the overall mean vector by resulting in considerably smaller standard errors and narrower 
confidence intervals. 

Keywords: Dark uncertainty; multivariate Birge ratio method; multivariate location-scale model; multivariate random 
effects model. 
 

1. Introduction 
 

Multivariate random effects model and multivariate 
location-scale model are the comonly used approaches for 
assessing and modeling dark uncertainty in multivariate 
measurements (see Jackson et al. (2010), Gasparrini et al. 
(2012), Jackson et al. (2020), Bodnar and Bodnar (2024b), 
Bodnar and Bodnar (2025)). The multivariate random 
effects model suggests an additive adjustment of the 
reported uncertainties, while the multivariate location-scale 
model is connected to the Birge ratio method and adjusts 
the reported uncertainties in the multiplicative way. We 
apply both models to the data which measure the 
effectiveness of the hypertension treatment and compare 
their ability to assess the dark uncertainty. 

The multivariate random effects model generalizes 
the univariate approach which is mostly used to conduct 
meta-analysis in medicine, chemistry, and metrology 
(see, e.g., Hardy and Thompson (1996), Rukhin (2013), 
Bodnar et al. (2016), Turner et al. (2015), Bodnar et al. 
(2017), Guolo and Varin (2017), Veroniki et al. (2019)). 
The multivariate location-scale model together with the 
Birge ratio method as developed in Bodnar and Bodnar 
(2025) extends the univariate location-scale model and it 
is preferable in metrology and physics (see Birge (1932), 
Bodnar and Elster (2014), Weise and Wöger (2000), 
Tiesinga et al. (2021), Bodnar and Eriksson (2023)). 
Recently, using Bayesian model selection, Bodnar and 
Eriksson (2023) conclude that the Birge ratio method 
outperforms the random effects models based on data 
used in the determination of physical constants. 

In this paper, we contribute to the existent literature 
by comparing the multivariate location-scale model 
connected to the Birge ratio method and the multivariate 

random effects model. In the comparison study, we 
analyse the ability of both models to estimate the overall 
mean vector for data used to study the effectiveness of the 
hypertension treatment. Both approaches find that the 
conducted hypertension treatment lowers both systolic 
blood pressure and the diastolic blood pressure and 
considerably reduces risks of cardiovascular disease and 
stroke. Moreover, the application of the multivariate Birge 
ratio method to the considered data leads to more precise 
estimators of the overall mean vector by producing 
considerably smaller standard errors and narrower 
confidence intervals in comparison to the ones obtained 
when the multivariate random effects model is used. 

The rest of the paper is organized as follows. The 
multivariate random effects model and the multivariate 
location-scale model together with the Birge ratio 
method are presented in Section 2, while they are 
applied to the data dealing with the effectiveness of the 
hypertension treatment in Section 3. Final remarks are 
provided in Section 4. 

 
2. Methods for modeling multivariate 

dark uncertainty 
 

We consider a study in which p features are 
measured simultaneously. Let x i be the p-dimensional 
vector of the measurement results from the i-th study for 
i =1,...,n which is reported together with the covariance 
matrix U i, the multivariate measure of uncertainty in the 
i-th observation vector. 

The multivariate random effects model adjusts the 
reported multivariate uncertainties additively and it is 
defined by 

x i = µ + λ i + ε i  with λi ∼Np(0,Ψ) and ε i ∼Np(0,U i),   (1) 
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where {λ i} i=1,...,n and {ε i} i=1,...,n are assumed to be 
mutually independent. Moreover, λ i and ε i are assumed 
to be normally distributed. The parameter vector µ is the 
overall mean vector, the main parameter of the model, 
while the matrix Ψ is the between-study covariance 
matrix, the nuisance parameter of the model (1) that is 
used to assess the multivariate dark uncertainty. 
Different methods are developed in the literature to 
estimate µ and Ψ. While Gasparrini et al. (2012) and 
Jackson et al. (2013) discuss the frequentist approaches, 
Bodnar and Bodnar (2023), Bodnar and Bodnar 
(2024a), and Bodnar and Bodnar (2024b) develop 
Bayesian methods, recently. 

Another method to adjust multivariate 
measurements is based on the multivariate location-
scale model, a generalization of the univariate 
approach, expressed as 

        x i = µ + Bε i   with   ε i ∼ Np(0,U i),               (2) 

where the measurement errors ε1,...,εn are assumed to 
be mutually independent. The parameter vector µ is 
the overall mean vector and it usually presents the 
main parameter of the model, similarly to the 
multivariate random effects model. The matrix B is a 
diagonal matrix with entries b1,...,bp. This matrix is 
used to adjust the reported unceratinties from the 
individual studies in the multiplicative way. If p = 1, 
the multivariate location-scale model becomes the 
univariate location-scale model and the multivariate 
Birge ratio method connected to the multivariate 
location-scale model becomes the univariate Birge 
ratio method, previously studied in Birge (1932), 
Bodnar and Elster (2014), Bodnar and Eriksson 
(2023), among others. 

The multivariate Birge ratio model has recently 
been developed in Bodnar and Bodnar (2025), who 
derive the maximum likelihood estimator for the 
parameters µ and B (or b) of model (2). Let b = (b1 
,...,bp)⊤ be the vector of the diagonal elements of the 
matrix B and define 𝒃� = �𝒃𝟏−𝟏, . . . ,𝒃𝒑−𝟏 �⊤ as the vector 
which consist of the inverses of the diagonal elements 
of B. Then, we get 

(i) The maximum likelihood estimator for B is given by 

               𝑩� = 𝑑𝑖𝑎𝑔(𝒃��−1),                         (3) 
where b is a vector with positive elements that solves 
the following system of quadratic equations 

                                           𝒃� ⊙ �𝑸𝒃�� = 𝟏p                                 (4) 

 with  
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where A i = diag(x i), i.e., a diagonal matrix with 
diagonal elements equal to the corresponding elements 
of the vector x i and 1p is the p-dimensional vector of 
ones. The symbol ⊙ denotes the Hadamard product. 

(ii) The maximum likelihood estimator for µ is given 
by 

  𝛍� = 𝒙��𝑩��= 𝑩��∑ 𝑼𝒊
−𝟏𝒏

𝒊=𝟏 �−𝟏 ∑ 𝑼𝒊
−𝟏𝑩�−𝟏𝒙𝒊𝒏

𝒊=𝟏  .         (5) 

Moreover, using the generalized likelihood ratio 
approach, Bodnar and Bodnar (2025) derive asymptotic 
marginal confidence intervals for each component of 
the overall mean vector µ which for the j-th component 
is given by 

𝒞�μ𝑗� = ��̂�𝑗 − 𝑢(1+γ)/2�𝑑𝑗𝑗 , �̂�𝑗 + 𝑢(1+γ)/2�𝑑𝑗𝑗�,   (6) 

where uβ is the β-quantile of the standard normal 
distribution, �̂�𝑗 R is the j-th element of  𝛍�, and djj is the j-
th diagonal element of 𝑩��∑ 𝑼𝒊

−𝟏𝒏
𝒊=𝟏 �−𝟏𝑩�. 

It is noted that the system of quadratic equations 
(4) cannot be solved analytically in general. One of 
possible methods to find the solution of (4) is the usage 
of the Buchberger algorithm which is based on the 
Gröbner basis and is implemented in Mathematica (see 
Buchberger and Winkler (1998), Buchberger (2001), 
Cox et al. (2015)). However, when p = 2, the system of 
quadratic equations (4) can be rewritten as 

  �𝑞11𝑏
�12 + 𝑞12𝑏�1𝑏�2 = 1,

𝑞21𝑏�1𝑏�2 + 𝑞22𝑏�22 = 1,
                             (7) 

where qjm are the elements of Q for j,m = {1,2} with q12 
= q21. Then, the unique solution of (7) consisting of 
positive elements in 𝒃�, is given by 

        𝑏��1 = 1

√𝑞11�1+
𝑞12

�𝑞11𝑞22

 , 𝑏��2 = 1

√𝑞22�1+
𝑞12

�𝑞11𝑞22

 .     (8) 

Another important special case corresponds to 
diagonal covariance matrices U i. In this case, the 
matrix Q = (qjm) j,m={1,...,p} is also diagonal with the 
diagonal elements given by 

               𝑞𝑗𝑗 = 1
𝑛
∑
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where x i = (xi,1,...,xi,p)⊤ and U i = (ui,jm) j,m={1,...,p}. Hence, 
the inverse of j-th element of b becomes 

𝑏�𝑗 = �𝑞𝑗𝑗 

and it coincides with the Birge ratio computed for the j-
the measured feature based on a univariate sample of 
measurement results for this feature (see Weise and 
Wöger (2000)). Also, the maximum likelihood 
estimator of the j-th component of µ becomes 

�̂�𝑗 =
∑ 𝑥𝑖,𝑗
𝑛
𝑖=1 /𝑢𝑖,𝑗𝑗
∑ 1/𝑢𝑖,𝑗𝑗𝑛
𝑖=1

, 

which is the weighted mean estimator, widely spread in 
the univariate case (see Bodnar and Elster (2014), 
Strawderman and Rukhin (2010)). 
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3. Assessing dark uncertainty in 
measurements for the effectiveness of the 
hypertension treatment 

 
In this section, we apply the multivariate Birge 

ratio method to assess the dark uncertainty in real data 
which consist of the results of ten studies on the 
effectiveness of the hypertension treatment. In each 
individual study, four features were measured which are 
systolic blood pressure (SBP), diastolic blood pressure 
(DBP), cardiovascular disease (CVD), and stroke. We 
refer to Wang et al. (2005) for the detailed description 
of the considered data. Additionally, three approaches 
from frequentist statistics are used to infer the 
parameters of the multivariate random effects model. 

The measurements of each study together with 
reported covariance matrices are available Table 1 of 
Riley et al. (2015). Some of the provided covariance 
matrices however appear not to be positive definite. 
These covariance matrices are adjusted by adding a 
diagonal matrix with the same diagonal elements to 
ensure that all reported covariance matrices are positive 
definite. The aim of the study was to analyze whether 
hypertension treatments can lower SBP and DBP and 
whether these treatments lead to the significant 
reduction of the risks of CVD and stroke. The variables 
SBP and DBP are defined as differences between the 

mean results in the group who received treatments and 
in the placebo group (without treatment), while the 
variables CVD and stroke are defined as the logarithms 
of the hazard ratio computed for the two groups. As 
such, negative values indicate the presence of the 
treatment effect. Also, the estimators of the overall 
mean vector together with the uncertainties obtained by 
the multivariate Birge ratio method and the multivariate 
random effects model will be compared in this section. 

The maximum likelihood estimates for the 
parameters of the multivariate location-scale model (2) 
are computed as 

𝛍� = �

−9.584
−3.682
−0.112
−0.400

� ,𝑩� = �

2.719 0 0 0
0 3.302 0 0
0 0 0.683 0
0 0 0 0.955

�. 

It is interesting that two diagonal elements of the 
matrix 𝑩� P

 
are larger than one, while the other two 

values are smaller than one, indicating that the reported 
uncertainties in the case of the SBP and DBP 
measurements are too small, and they need to be 
corrected. This is not the case with the uncertainties 
reported in the case of the CVD and stroke variables. 

In Table 1, the estimates of the overall mean 
vector µ are depicted together with their standard errors 
and 95% confidence intervals computed for each 
component of µ separately. 

 
Table 1: Estimates, standard errors, and 95% confidence intervals for the components of the overall mean vector µ obtained by 
applying the multivariate Birge ratio method derived in Bodnar and Bodnar (2025), the maximum likelihood and the restrictive 

maximum likelihood approaches under the multivariate random effects model described in Gasparrini et al. (2012), and the 
method of moments under the multivariate random effects model from Jackson et al. (2013). 

  µ1 (SBP) µ2 (DBP) µ3 (CVD) µ4 (stroke) 

 MLE, Multivariate Birge ratio method  

estimate  -8.79 -4.001 -0.226 -0.388 

stand. error  0.506 0.357 0.046 0.073 

conf. inter. [-9.783, -7.801] [-4.701, -3.300] [-0.316, -0.136] [-0.531, -0.244] 

 MLE, Gasparrini et al. (2012)  

estimate  -10.177 -4.622 -0.232 -0.323 

stand. error  0.867 0.497 0.071 0.093 

conf. inter. [-11.875,-8.478] [-5.596,-3.647] [-0.371,-0.093] [-0.505,-0.140] 

 REML, Gasparrini et al. (2012)  

estimate  -10.224 -4.646 -0.233 -0.321 

stand. error  0.927 0.530 0.071 0.095 

conf. inter. [-12.039,-8.408] [-5.685,-3.608] [-0.372,-0.093] [-0.507,-0.134] 

 Method of moments, Jackson et al. (2013)  

estimate  -9.923 -4.500 -0.228 -0.335 

stand. error  0.634 0.394 0.072 0.107 

conf. inter. [-11.166,-8.681] [-5.267,-3.724] [-0.369,-0.086] [-0.545,-0.125] 
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While no large differences are present in the 
estimators of the corresponding elements of the mean 
vector, the standard uncertainties differ significantly. 

 The application of the multivariate Birge ratio 
method results in the smallest standard errors and 
narrowest confidence intervals. This approach is followed 
by the multivariate random effect models with the 
parameters estimated by the method of moments. Finally, 
the widest confidence intervals are obtained when the 
parameters of the multivariate random effects model are 
fitted by the restrictive maximum likelihood method. 

Independently of the employed model to assess 
the presence of the dark uncertainty in the considered 
multivariate measurements and the method used to 
estimate the parameters in the case of the multivariate 
random effects model, all results in Table 1 confirm the 
presence of the effectiveness of the hypertension 
treatments in all four variables. These findings are in 
line with the previous results reported in Riley et al. 
(2015) who draw the same conclusion by fitting the 
multivariate random effects model to the data.  

 
4. Summary 
 

Combining the measurements of individual studies 
and the results of the interlaboratory studies into a single 
consensus value is an important topic of modern research 
with applications in medicine, chemistry, physics, 
metrology, among others. The situation becomes even 
more challenging when several features are measured in 
each individual study and it is reported together with the 
covariance matrix, the multivariate measure of uncertainty. 

In this study, we discuss the novel procedure to 
pool multivariate results of individual studies into the 
consensus vector by employing the multivariate 
location-scale model in connection with the multivariate 
Birge ratio methods, recently developed in Bodnar and 
Bodnar (2025). The estimators of the model parameters 
are obtained by applying the maximum likelihood 
approach. The new procedure is compared to the 
multivariate random effects model via an empirical 
application dealing with the study of the effectiveness of 
the hypertension treatments. It is found that the 
application of the multivariate Birge ratio method 
results in a more precise estimator of the overall mean 
vector. The computed standard uncertainties of the 
components of the overall mean vector are considerable 
smaller than the uncertainties obtained when the 
multivariate random effects model is used with different 
estimation procedures. Furthermore, independently of 
the employed model, the presence of the effectiveness 
of the hypertension treatments is found.  
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Теоретичні та практичні аспекти методу коригування невизначеності багатовимірних вимірювань  

за допомогою коефіцієнта Бірге 
О. Боднар, Т. Боднар

Анотація  
У статті ми представляємо багатовимірну модель масштабу розташування, пов'язану з багатовимірним методом 

коефіцієнта Бірге, новим підходом до моделювання темної невизначеності, яка зазвичай присутня, коли результати 
окремих досліджень об'єднуються. В емпіричній ілюстрації підхід застосовується до результатів вимірювань, що 
використовуються для вивчення ефективності лікування гіпертензії. Результати порівнюються з результатами, 
отриманими при використанні багатовимірної моделі випадкових ефектів. Обидві моделі підтверджують, що лікування 
гіпертензії може знизити систолічний та діастолічний артеріальний тиск, а також призвести до значного зниження 
ризику серцево-судинних захворювань та інсульту. Крім того, багатовимірний метод коефіцієнта Бірге дає точніші 
оцінки загального середнього вектора, що призводить до значно менших стандартних помилок та вужчих довірчих 
інтервалів. 

Ключові слова: темна невизначеність; багатовимірний метод коефіцієнта Бірге; багатовимірна модель масштабу 
місця; багатовимірна модель випадкових ефектів. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 


