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Abstract

Noise filtering is extensively applied in both the theoretical and practical aspects of signal processing. A much smaller
number of scientific works is devoted to the extraction of noise from realizations of random processes in order to analyze them
for specific tasks. The paper presents a method for separating signals and noise in multichannel measurement systems. The
method utilizes the experimental data matrix and employs singular value decomposition (SVD) to analyze both the singular
modes of the matrix and the partial matrices that comprise it. The conditions under which a partial first-order matrix describes
signals in the system channels, and higher-order matrices contain noise components, have been determined. This requires the
cosine of the angle between the data matrix and the first partial matrix must approach unity, and between the data matrix and the
second matrix - to zero. Such conditions are achieved when the signal-to-noise ratio exceeds a threshold value. In some cases, the
extracted noise can be utilized to determine measurement errors.

Keywords: data matrix, multichannel measurement system, noise filtering, singular value decomposition (SVD).

Introduction

In practical applications, multichannel measurement
information systems (MMIS) are extensively used across
various technical objects. These systems are capable of
measuring either homogeneous parameters, such as
pressure, or heterogeneous parameters, such as pressure,
acceleration, and force. In the latter case, all physical
quantities are normalized to ensure that parameters in all
measurement channels are dimensionless. Experimental
results, represented as realizations of random processes,
contain data describing the physical process being
measured, as well as noise. In most cases, the researcher
is primarily interested only in the parameters of the
random process. The presence of noise in measurement
channels distorts the signals; however, in certain cases, its
characteristics can provide useful information. In
practice, it includes both internal and external noises, as
well as random measurement errors, which are generally
difficult to separate from the noise. The ideal situation
would be one in which the main signals, noise, and
measurement errors are fully separated. Measurement
errors and noise characterize the uncertainty in the data.
They are often closely related and may exhibit similar
effects. In general, it is not possible to completely
separate noise from measurement errors. The main
reasons for this are the lack of sufficient information
about the primary sources of errors and noise in the
measurement system. Errors arise due to imperfections in
measuring instruments, measurement methods, and the
influence of external and internal factors. Random errors,
in terms of their characteristics, are very similar to noise.
Noise can originate from various sources (electrical,
thermal, quantum, etc.) and exhibit different spectral
characteristics. It can be either additive or multiplicative.
The presence of nonlinear transformation functions in the
measurement system can further distort the results. Thus,
separating measurement errors from noise is a

challenging task that requires a deep understanding of
both the physical processes generating the data and the
mathematical methods used for data processing. The
choice of an appropriate method depends on the specific
problem and requires experimental validation. In the
following, random measurement errors and noise will be
collectively referred to simply as “noise,” and we will
analyze the possibility of separating the signal from the
noise contained in multidimensional data.

The aim of this paper is to develop a method for

assessing noise in a multichannel measurement
information system based on singular value
decomposition.

Problem Statement

Although complete separation of noise from
measured results is impossible, there are a number of
general methods that can reduce its impact. These
methods include, in particular:

e Identification and analysis of possible sources
of systematic and random errors;

e (alibration, i.e., comparing measurement
results with reference values to determine and correct
systematic errors;

e Performing repeated measurements and
calculating the mean value to reduce the impact of noise
on the signal;

e Using statistical data processing methods,
including calculation of variance, standard deviation,
confidence intervals to assess measurement accuracy,
evaluation of skewness and multimodality, and
checking distribution laws;

e Filtering to reduce the influence of noise
components on the signal;

e Creating mathematical models of measurement
processes to evaluate the impact of various factors on
the results;

26

© 0. Poliarus, O. Koval, Ya. Medvedovska, A. Koval, 2025



Metrology and Instruments
General metrology

2/2025

MeTponoria Ta npunagu
BaranbHa MeTponoris

e Decomposition of data into empirical modes
for analyzing non-stationary signals;

e Wavelet transforms for decomposing the signal
into components with different frequencies and
localizing signal features in time;

e Using a priori information about the signal and
noise;

e Machine learning for pattern recognition in
data and separating signal from noise;

e (Clustering methods for dividing measurement
data into groups with similar characteristics;

e Spectral analysis to identify periodic
components that may be associated with systematic
errors or external disturbances.

In many cases, it is advisable to combine different
approaches and methods.

The general main drawbacks of existing noise
filtering methods are:

e Loss of useful information, especially at low
signal-to-noise ratios;

e Subjectivity in evaluating the quality of filtering
due to the absence of a single universal criterion;

e Dependence of filtering efficiency on the type
of noise present in the signal;

e Complexity in tuning filter parameters;

e Computational complexity, particularly for
large data sets, such as in MMIS.

Each method has its limitations; for example,
adaptive filters require a large amount of training data,
while wavelet analysis is sensitive to the choice of
decomposition basis. Recently, deep learning based on
neural networks and adaptive methods grounded in data
analysis, particularly Data Mining, have been employed.
Analyzing large sets of data and filtering noise in MMIS
requires consideration of alternative approaches, one of
which, based on singular value decomposition, is
presented in this paper.

Analysis of Recent Publications

A large number of scientific works are devoted to
noise analysis in multichannel systems. In [1], a method
for assessing the state of multichannel singular systems
with multiplicative noise was developed based on
singular value decomposition (SVD), taking into account
dynamic and multiplicative noise, as well as
measurement noise caused by measurement errors. The
evaluation of multiplicative noise in the absence of
information about input signals is carried out in [2] using
a filter optimized according to the minimum mean square
error criterion. The Kalman filter is also widely used in
singular systems [3], where measurements consist of
instantaneous and delayed observations, and the system
includes multiplicative noise. In singular systems, the
dynamics are described by a combination of algebraic
and differential equations. The complex nature of
singular systems poses many challenges for both
analytical and numerical treatment of such systems [4].
Uncertainties in measurement systems are considered as

multiplicative noise [5], and the least squares method is
used for sensor optimization. Many articles have
proposed algorithms for noise reduction. In [6], a filter
based on SVD and the minimization of the mean square
error (MSE) between the desired part of the signal and
the sum of the filtered microphone signals is applied to
improve  speech intelligibility.  Singular  value
decomposition and the principal component analysis
(PCA) method have limited noise reduction capabilities
under conditions of strong interference. For such
conditions, multichannel SVD is used in [7] to obtain
multiple signals constructed based on third-order tensors.
Noise reduction is simplified when the system models are
known, for which identification algorithms of
multichannel measurements are developed in [8]. To
reduce impulsive noise, a multichannel system for
estimating damped sinusoids is proposed in [9]. Even a
single-channel measurement system can be transformed
into a virtual multichannel system, and SVD can then be
applied [10] for “blind” signal separation. At the same
time, alongside the use of SVD, it is advisable to reduce
the dimensionality of the data matrix, as done, for
example, in seismic signal processing in [11]. In [12], a
method based on a modified Levinson algorithm is
proposed, which does not require assumptions about the
highest order of measurement channels with a finite
impulse response. To improve the robustness of
multichannel systems against modeling errors, a linear
minimum variance estimator is described in [13]. The
simplification of multivariate time series analysis is
achieved through the use of the variational mode
decomposition algorithm, which allows decomposing
time series into several modes that possess specific spatial
properties characteristic of a particular time series [14].
The SVD method is also applied to Hankel matrix sets for
noise removal and normalization of the corresponding
spaces [15]. To improve noise suppression efficiency in
multichannel systems, the paper [16] proposes
Regenerative ~ Multidimensional ~ Singular ~ Value
Decomposition, which maps measured signals into
multidimensional data. The data is processed using
Independent Component Analysis. Universal methods for
analyzing signals with noise are becoming increasingly
relevant. In [17], approaches for extending the use of
adaptive Fourier decomposition with a predefined basis in
multichannel systems are presented. The approach
proposed in [18] for “blind” identification of
autoregressive models uses the current autoregressive
information model, which is extracted from correlation
matrices. It does not require the Toeplitz channel
convolution matrix, which is traditionally used in
classical methods. At present, different types of noise are
suppressed separately. In [19], a noise removal scheme is
presented that takes into account their variance and
signal-to-noise ratio. The scheme employs a threshold
wavelet value and adaptive filtering of multi-source noise
based on singular values. To reduce the impact of noise
on deconvolution and improve image resolution, a
multichannel deconvolution method is used [20].
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Noise reduction methods using SVD are widely
applied in various fields. For example, to extract fault
features in technical systems and obtain their
quantitative assessments, [21] proposes an algorithm for
tensor SVD of multidimensional time series. The
extraction of mechanical fault features based on
multichannel  measurement information  systems
(MMIS) is carried out in [22] using an adaptive tensor
estimation model. The detection of damage in vibrating
structures with different degrees of freedom is
implemented in [23] based on recursive singular
spectral analysis combined with autoregressive
modeling. To extract fault signals from noise, [24]
forms a tensor in the phase space and analyzes the
principal components with suppressed noise based on
tensor SVD. In [25], a new multichannel method for
classifying mechanical fault signals is proposed, based
on an extended quaternion singular spectrum. Here,
quaternions are used to link signals from four channels.
To address the mode-mixing problem in
multidimensional empirical mode decomposition, [26]
employs quaternion singular spectral analysis. It
efficiently extracts the characteristic frequency of the
fault from multi-channel signals.

Matrix SVD methods are applied in audio systems.
In [27], a “blind” dereverberation method based on
generalized spectral subtraction is used for noise
suppression to improve speech recognition. To reduce
vocal noise, [28] presents a comparative analysis of
Wiener filtering, spectral subtraction, least squares
methods, and digital filters. SVD methods are
particularly intensively implemented in the medical
field. In [29], it is shown that tensor decomposition of
multichannel electroencephalography data can be used
to analyze epileptic spikes. In [30], a method for
reducing impulsive noise in electrical impedance
tomography is described, replacing linear filters with an
SVD-based decomposition filter. In [31], a model of
multichannel skin conductance recording is developed
for autonomic nervous system diagnostics, along with a
multichannel deconvolution approach for sparse noisy
data to generate reliable conclusions.

Information on blood pressure and other
physiological parameters is obtained using multichannel
sensors. To suppress noise in such systems, [32] proposes
a PCA algorithm with dynamic weighting of signals
across channels. In [33], an approach based on extended
Kalman filtering and SVD is proposed to extract the fetal
electrocardiogram from the maternal cardiogram under
conditions of arrhythmia in both the fetus and the mother.
In [34], SVD is used for the decomposition of extended
multichannel surface electromyography signals based on
minimum MSE estimation and convolution kernel
compensation. A parallel computation method for
determining background noise and detecting lung rales is
presented in [35]. The data matrix is factorized, and the
rale detection problem is solved simultaneously with
noise suppression, maintaining orthogonalization during
simultaneous source separation. Recently, intelligent
methods have been increasingly implemented in all noise

filtering applications. For instance, in [36], deep machine
learning is applied to single-channel systems to estimate
the number of signal sources in the presence of noise.
Thus, the main focus of recent scientific studies on
the topic under consideration is the reduction or
suppression of various types of noise in MMIS. This article
analyzes a method for noise level reduction and also
considers the possibility of using noise in the assessment of
uncertainty or measurement errors in MMIS.
Noise

Problems of Signal and

Separation in Big Data

A multichannel measurement information system
is considered, which measures one or several physical
quantities over a period of time. The experimental
results are recorded in a data matrix, which in some
cases can have very high dimensionality. This raises the
problem: under what conditions and how can useful
signals be separated from noise based on these results?

Let this data matrix A have dimensions mxn,
where m is the number of rows of the matrix, which in
practice corresponds to the number of measurement
channels, and n is the number of time samples, into
which the realization of the random process is divided
over the given time interval.

The experimental data matrix A
represented as [37]

can be

A=UXZV', )

where the unitary matrices U and V contain the left and
right orthonormal singular vectors, respectively, such that
U'U=1I and V'V =1, where I is the identity matrix.
The left singular vectors describe the basis of the row space
of the matrix A . They demonstrate a way of linearly
combining the rows to obtain the principal components.
The right singular vectors describe the basis of the column
space of the matrix and indicate how the columns should
be linearly combined to obtain the principal components.
Geometrically, the left and right singular vectors determine
the directions of maximum data variance in the row and
column spaces, respectively. The singular vectors indicate
the variables (factors) that have the greatest impact on the
output parameters and their interaction patterns. These
vectors can be used to construct a new data basis in which
the data exhibit a simpler structure.

The singular values of the matrix X characterize the
amount of data compression along each principal
component and essentially serve as an indicator of the
importance of these components. They are always non-
negative and arranged in descending order. Intuitively,
large singular values correspond to the main features of the
measured data, while small singular ones are associated
with noise or less important factors. The larger the singular
value, the more information it contains. By discarding
components with small singular values, one can reduce the
dimensionality of the data without significant loss of
information. If the data contain anomalies, this manifests as
unexpected singular values of the matrix A .
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The equation (1) provides a mathematical
description of the SVD method for the matrix A . If the
dimensionality of the data matrix A is mxn, then the
dimensionality of the matrix U is mxm, and matrix
V is nxn. The dimensionality of the matrix
coincides with that of the matrix A . If the
dimensionality of the matrix A becomes very large,
there exists a method to reduce its order without losing
measurement information. Most singular values are
equal to zero, and this property is used when reducing
the dimensionality of the matrix A . If the matrix U
vectors U, and matrix V vectors V, are known, the

matrix A will be presented in the form [37]
P
A= ZGiUiVi ) ()

where p is the number of modes, and o; is the singular

value for the i-th mode. The expression (2) in expanded
form:

— =T — —
A=0c0V +o,0V,+..+0,0V, =A +A,+.+A,.(3)

In  practice ©6,20,2..20,, and often

6,>0,>..>0,. The first term in relation (3) usually

significantly exceeds the other terms. It is determined by
the basic physical processes occurring at the technical
object whose parameters are being measured. The largest
singular values and their corresponding vectors represent
the principal modes or dominant patterns in the data.
Smaller values correspond to secondary modes that
capture less variance in the data. Some secondary modes
may represent not errors but subtle regularities in the
data. It is important to note that there is no clear boundary
between principal and secondary modes.

The real data contained in the matrix A , describe
the main physical processes as well as noise (including
measurement errors). The matrix can be represented as
the sum of a matrix responsible for these processes and a
matrix whose elements are noise. Therefore, operation (1)
represents the SVD of a sum of matrices, which is
generally a nonlinear operation, since such a
decomposition is not a linear combination of the elements
of the original matrix A . The singular values of the
matrix A , located on the diagonal of the matrix Y, are

the square roots of the eigenvalues of the matrix ATA .
The result of the SVD for the sum of matrices
depends not only on the individual singular values and
vectors of each matrix but also on their interaction.
Computing the SVD for large matrices is a
computationally expensive task, and for a sum of
matrices, this complexity can increase even more. The
singular values of a matrix determine its “importance” in
various subspaces. When we add matrices, their singular
values interact in a complex way: some may be
amplified, others weakened, and new singular values may
even appear. SVD defines orthogonal bases described by
the singular vectors contained in the matricesU and V .
When matrices are added, these bases change because the
new matrix has a different structure. Each singular value

and its corresponding singular vectors in the SVD have a
specific interpretation. For the sum of matrices, this
interpretation can be more complex, as it reflects the
interaction of different components. Because of adding
matrices, there may also be a loss of information about
the structure of the individual matrices, especially if the
matrices have different ranks or their singular values
differ significantly. The rank of the sum of matrices may
differ from the sum of the ranks of the individual
matrices, which also affects the outcome of the SVD.

In practice, decomposing a complex matrix into a
sum of simpler matrices often allows one to simplify the
model and improve its interpretability. However, the
SVD of such a sum is not a simple linear combination of
the SVDs of the individual matrices. In data analysis,
SVD is often used for dimensionality reduction and for
uncovering latent structures. SVD of time series makes it
possible to identify various trend components. Applying
SVD to the sum of matrices is useful for constructing
models that take into account different types of
information contained in the individual matrices.

Thus, the matrix A can be exactly decomposed
into components according to formula (2). This formula
is, in fact, an extended interpretation of formula (1). If
SVD were a linear operator, then in many cases the

matrix A, (i=12,...,p) would correspond directly to the

influence of the i-th factor. Due to the nonlinearity of
SVD, such a conclusion cannot always be made. From a
technical standpoint, operations (1) and (2) describe a
system where the measured data in the form of matrix A ,
is input, and the output consists of the singular values o,

which characterize the energetic properties of the
decomposition modes (3), as well as the orthonormal

vectors U, and V;. The relationship between o;, U, V,

and the elements of matrix A is nonlinear. Essentially,
one needs to estimate the measured data contained in A
based on the compressed information o, 0, and V. This

problem is extremely broad. In this paper, a method is
developed for partial separation of useful signals and
noise in a multichannel measurement information system
based on information about the singular values and
orthonormal vectors of the data matrix.

The method is based on obtaining the singular modes
and the hypothesis that the first mode, which significantly
exceeds all other modes in terms of energy, contains
information about the main physical process whose
parameters are being measured. Higher-order modes
describe secondary processes, measurement errors, and
noise. Separating them in practice is challenging.
Therefore, we first perform an analysis of the influence of
these factors on the characteristics of the SVD components.
The research plan includes the following stages:

1. Creating models of measurement signals in
MIMS without and with noise, and forming data matrices.

2. Determination of singular values and
orthogonal vectors for all data matrices.

3. Identification of patterns in the behavior of
singular values and orthogonal vectors depending on
measurement signal models.
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4. Development of guidelines for noise estimation
based on SVD and signal-noise separation methods.

5. Experimental verification of the proposed
method.

Signal models

Among the different types of signals, we will first
select the simplest ones, and then test the effectiveness
of the proposed method on more complex models.

Case 1: Constant signals in measurement
channels. There are various variants of constant signals,
one of which is constant signals with the same amplitude in
all channels. This is a special case, while in practice the
signal amplitudes usually differ across channels. Therefore,
to demonstrate the method, we choose signals with the
following amplitudes in five channels: 2; 2,5; 3; 4; 5. The
application of formula (1) for decomposition gives one
mode with a singular value of 245,5815. If the amplitudes
of the signals in the channels are the same and equal to
two, then the singular value is 141,4920 and only the
nature of the spatial mode distribution changes.

Case 2: Constant signals with noise.
We add identical white Gaussian noise to all signals
programmatically in MATLAB (Fig. 1). Since the signal
amplitudes in the channels are different, the signal-to-noise
ratio (SNR) q also varies across channels. In this example,

the average value of Q is 0,836 (the average noise
amplitude is greater than the average signal amplitude).
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Fig. 1. Distribution of instantaneous signal values in channels
for SNR q=0,8 (a)and q =41 (b).

Unlike constant signals, decomposition (1) yields
five modes with singular values shown in Fig. 2, where
the index on the x -axis represents the mode number.
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Fig. 2. Singular values of the 5 modes for signals with noise at
SNR ¢=0,8

Examples of spatial and temporal modes, determined
from the orthogonal matrices U and V , are shown in Fig.
3. These modes define the spatial configuration of the
matrix A in a multidimensional abstract space.

Spatial mode 1

3 ° —
=N =i T |
':cL-O 5 R ——
s
Z A ; . i ; |
1 1.5 2 25 3 35 4 45 5
Sensor number
e §pnllal_ mode 2 i
=
- . - ;.
L E——— — ]
=
< L N . L ) . 3
1 1.5 2 25 3 35 4 45 5
Sensor numnber
Spatial mode 3
PRE : .
] o
TR s 1
g =
<4l . . . J
1 1.5 2 25 3 3.5 4 45 5
Sensor nuimber
a)
- Tempol al mode 1
3
% *MMWMWWWWMWW
<0 £
600 8OO 1000 1200
Time step number
Temporal mode 2
202 - : -
=4 =
2 0 i
<02 :

0 200 400 . 60O 800 1000 1200
Ime step number

Temporal mode 3

0027

=

2o wwmwmwwwwwm

=

=02!

200 400 600 BOO 1000 1200
Time step number
b)

Fig. 3. Example of spatial (a) and temporal (b) modes for a 5-
dimensional signal with noise.
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The relative energy characteristics of the modes are
shown in Fig. 4. Therefore, the first mode contains about
45% of the energy of all other modes, which are almost the
same and about three times smaller than the first mode.
This indicates the necessity of considering all modes.

The dependence of the largest singular value of the
data matrix and the relative energy of the first mode on
the signal-to-noise ratio is shown in Fig. 5. As the SNR
increases, the singular values stabilize and practically do
not change further. Under these conditions, the energy of
the first mode increases and gradually approaches 100%.
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Fig. 4. Relative energy characteristics of the first modes
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Fig. 5. Dependence of the largest singular value (a) and the
relative energy of the first mode (b) on the SNR (

Partial matrices A, (i=1,2,..,p) describe the

influence of individual factors on the measured signals.
The similarity of these matrices to the data matrix A in
relation (3) can be assessed using the cosine of the angle
0 between the matrices A and A,, which is given by

the formula [38]

(AA))
cosf =2 ——" “)
[Allla,

where <A, Ai> is the scalar product of the matrices A
and A, , defined by the formula: (A, A;)=Sp (ATAi ) :
Here, Sp denotes the trace of the matrix product in

parentheses, i.e., the sum of the elements on the main
diagonal. The norms of the matrices A and A, are

defined similarly: ||A|| = ,/(A,A) s ||A|| = ,/(Ai,Ai> .

The similarity of matrices is an analogue of their
correlation and its description in terms of the cosine of
the angle between the matrices is a convenient tool for
multichannel systems. Figure 6 shows the dependence
of cos@ on the SNR. If the angle 6=0°, and cos®=1,
the matrices coincide; conversely, if 6=90° and
cos0 =0, the matrices completely lose similarity.

At low signal-to-noise ratios, the cosine of the angle
between matrix A and the matrices A, A, is
approximately the same. This means that under conditions of
strong noise, the partial matrices A, (i=1,2,...,p) do not
resemble the data matrix A ; therefore, their analysis may
lead to incorrect conclusions about the measured data. At
q ~ 5 or higher, the partial matrix closely resembles the data

matrix A (the cosine of the angle 6 exceeds 0,95).
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Fig. 6. Dependence of the cosine of the angle between
matrices A and A; (solid line) and between matrices A and A,
(dashed line) on the signal-to-noise ratio (

From this, it follows that many conclusions about
the measurement results contained in matrix A , can be
drawn based on the analysis of matrix A, , which is much

simpler than the full data matrix and, according to (3), is
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described by a single mode with singular value o . The
matrix A, contains the measurement data responsible for

the main physical processes occurring in the object whose
parameters are being measured. The matrix A also
contains these measurement data, but they are distorted
by noise. In fact, at high signal-to-noise ratios, the useful
signal is effectively filtered and cleaned of noise.
However, the noise is not lost during this filtering and is

captured in matrices A, (i =23,.., p) . Since under these

conditions 0, >0, >0, >...2 0, from a practical point

of view, it is advisable to analyze the noise using only
matrix A, , but only after ensuring that the experimental

results were obtained under high signal-to-noise
conditions. The principle of separating noise from the
signal can be explained using an analogy.

The matrix A in a multidimensional abstract
space can be mentally visualized as a vector, whose
amplitude is determined by the singular values
concentrated in the diagonal matrix X, and whose
direction is defined by the orthogonal vector matrices U
and V. For clarity, we make a significant
simplification and represent the matrix A as a vector
A on a two-dimensional plane (Fig. 7).

Based on the previous reasoning, this vector can be
approximately decomposed into a vector representing
the signal, and a vector AZ , representing the noise.

As can be seen from Fig. 7, the vector A is

nonlinearly related to the vectors Al and AZ .

Fig. 7. Simplified illustration of the principle of separating
noise from the signal

It corresponds to the geometric sum of these
vectors, which is a simplified geometric analogy of
relations (2) and (3) under the condition.

At high signal-to-noise ratios, cos§ —1, and the
angle itself 8 —0° (Fig. 7). As soon as the angle 0

approaches zero, the vectors Al and AZ become close
to the vector A, meaning that instead of the nonlinear
operation of forming the geometric sum A= 'E& +,5~2
we effectively get an arithmetic sumA =~ A, +A,,

which can be performed using a linear operation. From
this, we conclude that the signal and noise behave
additively. The measurement results are contained in a
matrix A , which after transformation (1)...(3), go to

the matrices :&1 and Az Analyzing the matrix A

2

allows us to obtain information about noise, which
also includes measurement errors. If external and
internal noise is significantly reduced during
experiments, analyzing the matrix A, makes it

possible to estimate measurement errors, which are
often difficult to distinguish from noise. The remaining
challenge is separating noise from the signal at low
signal-to-noise ratios.

Case 3: signals with noise varying across
channels. Now consider an example with a different
data matrix: instead of constant signals in the
measurement channels, there are harmonic signals with
varying amplitudes and frequencies, as well as signals
with linear and nonlinear amplitude modulation, to
which noise is added (Fig. 8).

36 T
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)
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Time step number
Fig. 8. Realizations of random signals with noise in five
channels at g=4,18

1200

The average signal-to-noise ratio by amplitude was
4,18.

The distribution of singular values and the relative
energy of the modes are shown in Fig. 9.

At this SNR, the cosines of the angles between the
matrices A , A, and between A, A, are 0,9616 and

0,2202, respectively. These values roughly coincide
with the corresponding values for constant signals.
Similar results are observed for other types of signals at
comparable signal-to-noise ratios. Therefore, the
similarity of the main data matrix A with the partial
matrices A, primarily depends on the energy

characteristics of the modes (i.e. SNR) rather than on
the specific shape of the signals.

Case 4: Analysis of Experimental Studies.
Consider the results of two experimental studies
conducted by the authors.

The first experiment used a measuring complex
containing four digital strain gauges to measure the
deformation of a mechanical installation. Four
realizations of a non-stationary random process were
obtained (Fig. 10).
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Fig. 9. Distribution of singular values (a) and relative modal
energies of the data matrix (b) for the 3rd case
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Fig. 10. Time dependencies of the deformations of the
mechanical setup

The cosines of the angles between the data matrix
A and the partial matrices A, according to formula

(4), are:
e Between A and A, :0,7185.

e Between A and A, : 0,6050.
e Between A and A,:0,3391.

e Between A and A, :,.0531.
e Between A, and A, : 1,4664-10"°

The singular values of the modes and their relative
energy are shown in Fig. 11.
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Fig. 11. Singular values of the modes (a) and their relative
energy (b) in the first experiment.

This means that the similarity between the data
matrix A and A, is preserved practically up to the third

partial matrix, while there is no correlation between the
partial matrices themselves. The cosine of the angle
between matrices A and A, is particularly significant. In

the given experimental study, it equals 0,7185, indicating
that one cannot assert a strong similarity between these
matrices, and the partial matrices cannot be attributed with
noise properties, since their correlation with the main
matrix remains high (0,605). All of this reflects the
nonlinearity of the SVD transformation.

In the second experiment, stationary pressure
processes were studied (Fig. 12).

The realizations of this process are described by a
single mode. The cosine of the angle between matrices A
and A, is very close to 1, while between matrices A and

A, it is 0,004. The time dependencies of pressure for
matrix A, practically replicate the previous figure. This

indicates that matrix A, represents the main physical
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processes occurring in the setup. Since the similarity
between matrices A and A, is practically absent, matrix

A, can be considered to represent noise (Fig. 13).
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Fig. 12. Time dependences of pressure in three channels of the
measuring information system
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Fig. 13. Instantaneous noise values for the second
experiment

Analysis of secondary modes in singular

decomposition of a data matrix

Therefore, the analysis method using SVD allows
us to identify the main modes in the experimental data,
in which a significant part of the energy and information
is concentrated. The main modes are associated with
essential patterns in the data that likely represent real
phenomena under study. However, there are also non-
primary (additional, secondary) modes that are usually
not analyzed in practice.

Can we assume that secondary modes may describe
measurement errors during data collection? There are no
theorems that definitively answer this question. In many
cases, secondary modes with significantly smaller singular
values may characterize noise or measurement errors. The
assumption is that the main signal in the data has a larger
variance than the noise, and measurement errors are
smaller in magnitude than the main components of the
signal. However, it is not always straightforward to
determine the boundary between signal and noise, or
between noise and random errors. It should also be noted
that some secondary modes may occasionally represent
subtle patterns in the measurement data. To reduce the
impact of SVD nonlinearity, it is necessary to ensure a high

value of cos® — 1. For the first experiment, this
condition is not met, whereas for the second experiment, it
is fully satisfied. This is due to the non-stationarity of the
random processes in the first experiment. As a result, it is
impossible to determine the noise in the first experiment
using the proposed method, since it contains components
of the main mode due to SVD nonlinearity. The second
experiment, in contrast, is described by a single mode and
is characterized by weak correlation between the data
matrix and partial matrices with indices 2 and higher. At
the same time, the similarity between matrices A and A,

is very high. Thus, for separating signal and noise, the
described method can be applied provided that cos©

between matrices A and A, or the relative energy of the
first mode exceeds a certain threshold, for example, 0,9 or
90%, respectively. The lower this threshold, the larger the
errors in noise determination. To evaluate these errors, we
obtain the matrix A, at different signal-to-noise ratios.

The matrix A, at SNR (~41 for the second case
considered in the article is taken as the reference, i.e.,
A, =A,, .Forlower SNR q , new matrices are calculated
and compared with the reference matrix. When SNR q

decreases, some real important signal characteristics may
be misclassified as noise if they make a small contribution
to the total variance. Thus, the data matrix A contains both
signals and noise; the first-order partial matrix A, mainly
represents signals, while all higher-order partial matrices
primarily represent noise, with the highest level occurring
in matrix A,. If a low level of internal noise in the
measurement system is ensured and external noise is
absent, matrix A, will contain information about random
measurement errors or measurement uncertainty. Most
systematic measurement errors are difficult to determine
with the proposed method, as they may appear in the first-
order matrix A, . To enable the separation of signals and
noise, an appropriate signal-to-noise ratio must be
maintained. The reference matrix A, is illustrated by the
dependencies shown in Fig. 14.
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The

parameters at other values of  have a similar form. It is
advisable to consider the ordinates on all graphs, as they
characterize the noise amplitudes. If these amplitudes
are large, it indicates that energy is flowing from the
first mode to higher-order modes due to nonlinear
effects in the SVD process. It is not the amplitude of the
noise that matters, but the signal-to-noise ratio.

Fig. 15 shows the dependence of the relative error
in noise estimation on (. The relative errors were
calculated as the ratio of the maximum value of the
matrix A, at the corresponding ¢ to the maximum

time dependences of the matrix A,

value of the data matrix A.
&0
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o
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ok — — e - L - ——

0 § 10 15 20 25 30 3/ 40 45
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Fig. 15. Dependence of the relative errors in noise estimation
on the signal-to-noise ratio

Figure 15 shows that for any data matrix, it is
possible to determine conditions under which noise
together with measurement errors will not exceed a
specified level. Separation of noise and measurement
errors in the matrix A, can be done by machine

learning methods or other methods if there are any
differences between them.

It should be noted that SVD is a popular method for
data dimensionality reduction. However, there are other
methods, each with its advantages and disadvantages.
First, there is the Principal Component Analysis (PCA)
[39]. The first few principal components of PCA,
corresponding to the largest eigenvalues of the covariance
matrix, coincide with the first few left singular vectors of
SVD. However, SVD is a more general method and can
be applied to arbitrary matrices. Second, there is Linear
Discriminant Analysis (LDA) [40], which seeks linear
combinations of the original variables that maximize the
separation of different data classes. LDA is effective for
classification tasks when classes are clearly separated but
is less effective for small sample sizes. Third, there is t-
Distributed Stochastic Neighbor Embedding [41], a
nonlinear method that preserves the local structure of data
in a low-dimensional space. This method is often used for
visualizing high-dimensional data, but it can be quite
slow for large datasets, and the results may depend on the
initial initialization.

Fourth, there are machine learning methods [42]
based on neural networks. A hidden layer with fewer
neurons performs the dimensionality reduction. Neural
network—based methods require large amounts of
training data and are prone to overfitting. Each of these
methods has its strengths and weaknesses. The choice of
method depends on the specific task and requires
analysis of the data and research objectives. In some
cases, using a combination of methods may be advisable
to achieve acceptable results.

To determine the role of each partial matrix in
forming noise and measurement errors, a model was
constructed in the form of parallel-connected MMIS and
a reference measurement information system (RMIS),
where measurement errors are approximated as zero.
Partial matrices for MMIS are denoted as A, and for

RMIS as A;,. The similarity between the data matrices
A, and A, is already close to one, allowing the

analysis of random processes that determine the
physical properties of the system under different
distributions of noise and measurement errors. The
results are presented for a signal-to-noise ratio of 14.
The similarity (measured via cosine of the angle)
between the matrices A, and A, , A, and A, , A,

and A A, and A, ranges from 0,6976 to 0,7669.

Cross-similarity, e.g., between A, and A,, A, and

4n >

A, is close to zero. The study is conducted for the

case where the level of random errors and noise is
approximately equal.

For comparable noise and measurement errors, we
consider simulation results with different distributions:
noise distributed uniformly, and measurement errors
normally. The mixture of noise and errors already
deviates from a normal distribution. After singular value
decomposition, we obtain practically identical matrices
A, for MMIS and A, for RMIS, with similarity close

to 1, even at a relatively low signal-to-noise ratio
(Fig. 16).
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Fig. 16. Dependence of the similarity of different matrix pairs
on the signal-to-noise ratio

The similarity between the matrices A, and A, ,
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A, andA, , A, and A
to-noise ratio =14 is in the range from 0,7 to 0,77

A, and A, ata signal-

3n > 4n >

(Fig. 16) and increases at higher q . Therefore, at high

SNR, the analysis of noise and measurement errors can
be performed using MMIS data alone, without the use
of RMIS. At low g, the matrices A; for MMIS and

RMIS differ, and the similarity between the input data
matrix and the noise matrices is low.

It is important to clarify the physical meaning of the
noise matrices A; , which describe the noise components

in MMIS. Since the input data were generated through
modeling, the noise and measurement errors are known,
and the similarity of matrices A, with the actual noise

can be determined. This similarity is small
(approximately 0,3) and increases only slightly with
increasing . The similarity of these matrices with
measurement errors may exceed 0,4 and decreases as the
SNR grows. The similarity of matrices A, for RMIS with
noise is much higher and can exceed 0,5; it may increase
with increasing ¢ for A, , and decrease for all other A,

Their similarity with measurement errors is
approximately zero, as expected, since measurement
errors were not introduced in RMIS during modeling.
This analysis corresponds to the case of measurement
errors comparable to noise.

For large noise (a third of the average signal
amplitude) and small measurement errors (10 times less
noise), in MMIS the similarity of noise matrices with
actual noise is in the range 0,44-0,47, and in RMIS 0,42—
0,47. The similarity of the noise matrices with
measurement errors is close to zero for SNR of 3.

For small noise, 10 times smaller than the
measurement errors, at a signal-to-noise ratio of 27, the
similarity of MMIS noise matrices with noise is 0,05—
0.08, and with measurement errors 0,42-0,46; for RMIS,
the similarity with noise is about 0,42—0,45 and near zero
with measurement errors, since no measurement errors
were assumed in RMIS.

Thus, the analysis of partial matrices from the
singular value decomposition of the input data matrix
shows the impossibility of clearly assigning these
matrices either to noise or to measurement errors. The
SVD method does not allow determining the

responsibility of the i-th partial matrix (i =2,...,5) for

5n >

forming noise or measurement errors, which in general
cannot be separated using this method. The most
favorable case occurs at high g, when the singular values

of the first matrix A, are much larger than those of the
other partial matrices A, for i=3,..,5. In this case, the
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Merto/ oniHIOBaHHS IIYMIB B 0araTokaHa/bHili BUMiploBaJbHii iHdopmaniiiniii cucremi Ha ocHOBI 1exoOMIIO3H LY
CHHIYJIIPHHMX 3HA4YeHb MATPHLI JaHUX
O.B. omsapyc, O.A. Kosans, 5I.C. Mensenosceka, A.O. Kosaib

AHoTanis

®inprpamnis MIyMiB IIHPOKO BIPOBAKEHA B Teopii 1 TexHini 0OpoOky curHaiiB. 3HaYHO MEHIIA KiJIbKiCTh HAyKOBUX POOIT
NpPUCBSYEHA BIIIYYEHHIO IIyMIiB 3 peaii3alliil BUNAJKOBUX HPOIECIB 3 METOIO 1X aHaii3y I crenu(pivHuX 3aBHaHb. Y CTaTTi
3aIPOIIOHOBAHO METOJ| PO3/LICHHS CUTHAJIB i IIyMiB y OaraTokaHaNbHIM BUMIipIOBaNIbHIN iHGOpManiiHiil cucremi. s mporo
BUKOPUCTOBYETHCSI MAaTPHILS €KCIIEPUMEHTAIBHAX JAHMX 1 32 JOMIOMOTOI0 IEKOMIIO3UIIi CHHTYJISIPHUX 3HaueHb (singular value
decomposition — SVD) 3xificHIOETbCS aHAII3 CHHTYISIPHUX MOJ Li€l MaTpumi Ta HapuialbHUX MAaTPHIb, SKi € CKJIAJOBUMHU
MaTpHli AaHUX. Bu3Ha4eHi yMOBH, NpHU SKHX HapliialbHa MaTpPHI IEPIIOro Mopsaky Oy/e OMMCyBaTH CHIHAJIM B KaHalax
CHCTEMH, @ MATPHIIi BUIIUX HOPAIKIB MICTATH IIyMOBI KOMIOHEHTH. J{JIs1 IFOTO KOCHHYC KyTa Mi)kK MaTpPHLECIO TaHUX Ta IEPLIO0
MapIiagbHOI MAaTPUICIO MOBUHEH HAOIMKATUCS OO OJMHUIN, a MK MAaTPUICI0 JaHUX Ta IPYror0 MaTpHLEI0 — A0 Hyls. Taki
YMOBHU JIOCSATAIOTHCS. y BUMAIKaX MEPEBHIICHHS IMOPOTOBOTO DPiBHS BiAHOMICHHSAM CUTHAN/IryMm. OTpuMaHi OIyMH B OKpEMHX
BHUIIAJIKaX MOXYTh BUKOPHCTOBYBATUCS JUISl BUSHAYCHHS [TOXUOOK BUMIPIOBAHHSI.

KurouoBi ciioBa: 6ararokaHaisHa BUMipIOBanbHa iH(GOpMaLiiiHa crucTeMa, IEKOMIIO3HUIIS CHHTYIIPHUX 3HAYCHb, MATPULI
EKCHEePUMEHTAJIbHUX JaHUX, QIIbTpaLis mymy.
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