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Анотація 
У статті представлено результати теоретичного дослідження взаємодії вихорострумового перетворювача (ВСП) з 

феромагнітним зразком, що містить поверхневу тріщину. Актуальність роботи зумовлена необхідністю підвищення 
достовірності та селективності вихорострумового неруйнівного контролю металевих виробів, особливо у випадках, коли 
класичні ВСП демонструють низьку стійкість до впливу змін зазору, магнітної проникності та електропровідності об’єкта 
контролю. Для усунення цих недоліків авторами розроблено ортогональний вихорострумовий перетворювач, який забезпечує 
просторове розділення функцій збудження та реєстрації сигналу. Запропоновано математичну модель взаємодії ВСП із 
поверхневою тріщиною, що враховує поверхневий характер вихрових струмів та їх орієнтацію вздовж дефекту. У моделі 
обмотки перетворювача подано у вигляді ідеалізованих провідників, що дозволяє аналітично описати вплив геометричних 
параметрів ВСП і зразка на вихідний сигнал. Отримано залежності амплітуди сигналу від кутового положення перетворювача, 
розміру тріщини, зазору між ВСП і поверхнею, а також від співвідношення розмірів збуджувальної та вимірювальної обмоток. 

Ключові слова: вихорострумовий перетворювач, вимірювальна обмотка, дефект, феромагніт, математичне 
моделювання, тріщина, контроль електромагнітна проникність, геометричні параметри. 

 
1. Вступ 

 

Сучасні вихорострумові дефектоскопи 
переважно оснащені вихорострумовими 
перетворювачами (ВСП), які одночасно реагують на 
початкове електромагнітне поле та на поле, 
зумовлене наявністю дефектів, – так звані «класичні 
ВСП» [1,2]. Такі перетворювачі виконують дві 
основні функції: створюють збуджувальне поле та 
здійснюють реєстрацію вихрових струмів у 
контрольованому об’єкті. Однак об’єднання 
процесів збудження й вимірювання в одній 
конструкції не завжди є перевагою. У більшості 
випадків це недолік, оскільки не дозволяє 
оптимально розташувати вимірювальну обмотку 
відносно джерела збудження, що могло б підвищити 
селективність методу [3]. 

З метою підвищення ефективності 
вихорострумової дефектоскопії металовиробів 
авторами було створено ортогональний 
вихорострумовий перетворювач [4]. Використання 
такого пристрою дає можливість отримати більш 
достовірну інформацію про дефекти, одночасно 
компенсуючи вплив небажаних факторів: зміни зазору, 
магнітної проникності та електропровідності 
контрольованого об’єкта тощо. 

Мета статті – дослідження математичної 
моделі взаємодії вихорострумового перетворювача з 
феромагнітним зразком із тріщиною. 

 
2. Виклад основного матеріалу 

 

Для математичного опису процесів було 
запропоновано модель взаємодії ВСП з об’єктом, що 
містить поверхневу тріщину.  

У межах цієї моделі вводяться припущення та 
обмеження: вихрові струми в матеріалі мають 
поверхневий характер та переважно орієнтовані вздовж 
дефекту. Таким чином, тріщина розглядається як 

відрізок ідеально тонкого провідника, по якому протікає 
струм. Обмотки перетворювача у моделі подаються у 
вигляді нескінченно тонких провідників, контури яких 
відтворюють форму витків (рис. 1).  

В роботі [8] здійснено теоретичний аналіз 
функціонування накладного трансформаторного 
вихорострумового перетворювача. Показано, що 
вихідна напруга ВСП визначається як функція добутку 
взаємних індуктивностей його обмоток з об’єктом 
контролю (ОК). 

 

 
a – нижня ділянка збуджувальної обмотки; b – нижня 
ділянка вимірювальної обмотки; a1 – бічна сторона 

збуджувальної обмотки; b1 – бічна сторона вимірювальної 
обмотки; a´ – верхня ділянка збуджувальної обмотки; 

b´ – верхня ділянка вимірювальної обмотки; с – дефект; 
x, y – координати проєкції центральної частини 

перетворювача; h – відстань між площиною дефекту та 
перетворювачем; φ – кут між дефектом і ділянкою 

збуджувальної обмотки 
 

Рис. 1. Розрахункова модель взаємодії ВСП із тріщиною 
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 12 23 ,U f M M                         (1) 

де U – сигнал вимірювальної обмотки; M12 – взаємна 
індуктивність між збуджувальною обмоткою та 
об’єктом контролю (ОК); M23 – взаємна 
індуктивність між вимірювальною обмоткою та ОК. 

З попереднього аналізу цієї моделі (рис. 1) 
випливає, що бічні ділянки збуджувальної та 
вимірювальної обмоток (a1 і b1) мають нульову 
взаємну індуктивність із дефектом, оскільки вони 
орієнтовані перпендикулярно до нього. Тому 
подальший розгляд зосередимо на взаємних 
індуктивностях Mac, Ma'c, Mbc, Mb'c ділянок a, a´, b, 
b´ з дефектом c. Тоді 

 

12 ' ,ac a cM M M  23 ' .bc b cM M M             (2) 

 
Визначимо зазначені взаємні індуктивності за 

методикою [9], використовуючи геометричні 
параметри ВСП та координати відповідно до рис. 1. 
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(3) 
 

де 2ac
  – відстань дальнього кінця відрізка с до 

спільного перпендикуляра з а; 2ac
 – відстань від 

дальнього кінця відрізка а до спільного перпендикуляра 
з с; 1ac

  – відстань від ближнього кінця відрізка с до 

спільного перпендикуляра з а; 1ac
 – відстань від 

ближнього кінця відрізка а до спільного 
перпендикуляра з с; 11ac

D – відстань між ближніми 

кінцями відрізків а і с; 12ac
D  – відстань між ближнім 

кінцем відрізка с і дальнім кінцем відрізка а; 21ac
D – 

відстань між ближнім кінцем відрізка а і дальнім кінцем 
відрізка с; 22ac

D  – відстань між дальніми кінцями 

відрізків а і с; acA  – коефіцієнт впливу зазору h. 

Перелічені величини визначаються за 
формулами (4–12): 
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Аналогічно для взаємоіндуктивності між a´ та c з 
урахуванням того, що a´ = a: 

 

' ' ' '

0
' 2 ' 2 '

22 21 22 12

cos arth arth
2

a c a c a c a c

a c a c a c

a c
M

D D D D

    
                 

  

  
' ' ' '

1
1 ' 1 ' '

11 12 11 21

arth arth ,
sin

a c a c a c a c

a c a c a c

h aa c
A

D D D D

    
                

 (13) 

 

де 2 'a c  – відстань далекого кінця відрізка до 

загального перпендикуляра з a´; 2 'a c – відстань 

далекого кінця відрізка a´ до загального 
перпендикуляра с; 1 'a c – відстань ближнього кінця 

відрізка до загального перпендикуляра з a´; 1 'a c  – 

відстань ближнього кінця відрізка a´ до загального 
перпендикуляра з с; 

'11a c
D – відстань між ближніми 

кінцями відрізків a´ і с; 
'12a c

D  – відстань між ближнім 

кінцем відрізка з далеким кінцем відрізка a´; 
'21a c

D  – 

відстань між ближнім кінцем відрізка a´ і далеким 
кінцем відрізка с; 

'22a c
D  – відстань між дальніми 

кінцями відрізків a´ і с; 'a cA  – коефіцієнт впливу 

зазору h+а1.  
Перелічені величини перебувають за формулами 

(14-22): 
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Для взаємоіндуктивності між відрізками b та c, 

запишемо: 
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де 2bc
 – відстань далекого кінця відрізка до 

загального перпендикуляра з b; 2bc
 – відстань 

далекого кінця відрізка b до загального 
перпендикуляра з с; 1bc

 – відстань ближнього кінця 

відрізка до загального перпендикуляра з b; 1bc
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кінцями відрізків b і с; bcA  – коефіцієнт впливу 

зазору h.  
Перелічені величини перебувають за 

формулами (24-32): 
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           (32) 

Аналогічно для взаємоіндуктивності між b´ і c з 
урахуванням того, що b´ = b: 
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 (33) 

де 
'2b c

 – відстань далекого кінця відрізка до загального 

перпендикуляра с b´; 
'2b c

 – відстань далекого кінця 

відрізка b´ до загального перпендикуляра з с; 
'1b c

 – 

відстань ближнього кінця відрізка до загального 
перпендикуляра з b´; 

'1b c
 – відстань ближнього кінця 

відрізка b´ до загального перпендикуляра з с; 
'11b c

D – 

відстань між ближніми кінцями відрізків b´ і с; 
'12b c

D – 

відстань між ближнім кінцем відрізка з далеким кінцем 
відрізка b´; 

'21b c
D – відстань між ближнім кінцем відрізка 

b´ і далеким кінцем відрізка с; 
'22b c

D – відстань між 

дальніми кінцями відрізків b´ і с; 'b cA  – коефіцієнт 

впливу зазору h+b1.  
Перелічені величини перебувають за 

формулами (34-42): 
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Отримані аналітичні вирази (2-42) дозволяють 
визначити функцію геометричних параметрів ВСП 
та координат: 

 
   12 23

1 1
m ax 12 23 m ax

, , , , , , , , ,
M MU

u f a b c a b x y h
U M M


   


 (43) 

де u  – нормована амплітуда сигналу ВСП, виходячи 
з (1); 1 1, , , ,a b c a b  – геометричні параметри ВСП та 

дефекту; , , ,x y h   – координати ВСП відносно 

дефекту (рис. 1). 
Для узагальненого дослідження залежностей 

вихідного сигналу ВСП було обрано поодинокі 
відрізки, пропорційні розмірам обмоток ВСП. 
Розрахунок моделі та побудова залежностей 
здійснювалися із застосуванням програмних 
продуктів MS EXEL, MATLAB, Advanced Grapher.  

Аналіз отриманих аналітичних виразів показує, що 
особливістю ВСП [4] є залежність корисного сигналу 
від кута між дефектом і збудливою обмоткою. Це 
дозволяє ідентифікувати орієнтацію протяжної тріщини. 
На рис. 2–4 наведено результати моделювання 
залежності сигналу від φ для різних довжин дефекту, 
зазору та співвідношення розмірів обмоток ВСП. 

Встановлено наявність усунення максимуму сигналу 
при різних співвідношеннях розмірів збуджуючої та 
вимірювальної обмоток ВСП (рис. 4). Це дає 
можливість коригувати діаграму спрямованості ВСП. 

На рис. 5 наведено залежність сигналу ВСП від 
довжини тріщини d при різних зазорах h. Видно, що 
при великих тріщин сигнал ВСП мало залежить від їх 
довжини, проте зі збільшенням зазору чутливість до 
розміру тріщини збільшується. Залежність нормованої 
амплітуди сигналу від зазору представлена на рис. 6.  

 

 
Рис. 2. Залежність нормованої амплітуди u від кута φ при 

різних довжинах дефекту ( –––  с=1; – –  с>10; −∙−∙  с=0,5; 
∙∙∙∙∙∙  с=0,1) 

 
Рис. 3. Залежність нормованої амплітуди u від кута φ при 

різних зазорах (–––  h=0; – –  h=0.05; −∙−∙  h=0,1; ∙∙∙∙∙∙  h=0,5) 

 
Рис. 4. Залежність нормованої амплітуди u від кута φ при 

різних відносинах довжин обмоток ВСП ( ––– a/b=1; 
 – – – a/b =10; −∙−∙  a/b =0,1) 

 
Рис. 5. Залежність нормованої амплітуди u від довжини 

тріщини d при різних зазорах ( ––– h=0;  – – h=0,1; −∙−∙h =0,25; 
∙∙∙∙∙∙ h=0,5) 

 
Рис. 6. Залежність нормованої амплітуди u від зазору h за 
різних довжинах тріщини ( –––  с=1; – –  с=10; −∙−∙  с=0,5; 

 ∙∙∙∙∙∙  с=0,1) 
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З аналізу даних наведених на рис. 6 слід, що 
чутливість до впливу проміжку більш істотна для 
коротких тріщин.  

Для оцінки впливу зазору за різних розмірів a1, b1 
(див. рис. 1) ділянок обмоток ВСП отримані 
залежності, представлені на рис. 7–8. При невеликих 
зазорах вибір розмірів a1, b1 не критичний, проте 
сигнал ВСП монотонно збільшується зі збільшенням 
a1 і b1 пропорційно зазору. Тобто зазначені розміри 
необхідно вибирати з урахуванням можливих робочих 
зазорів або товщини неелектропровідних покриттів. 

 

 
Рис. 7. Залежність нормованої амплітуди u від зазору h 

при різних довжинах обмоток ВСП 
 ( ––– – a1=b1=1; – – – a1=b1=2;  −∙−∙ – a1=b1=0,5) 

 

 
Рис. 8. Залежність нормованої амплітуди u від відношення 

a1/h при різних зазорах  
    ( ––– – h=1; – – – h=0,5; −∙−∙ – h =0,1) 

 

Залежність амплітуди сигналу ВСП від 
переміщення вздовж короткого і довгого дефектів 
наведено на рис. 9. Точки перегину графіків 
відповідають краю дефектів. У разі збільшення 
зазору чутливість до переміщення поблизу краю 
дефекту зменшується.  

На рис. 10–11 представлені залежності 
корисного сигналу ВСП від відносного переміщення 
x/c (0 відповідає середині дефекту, 0,5 – краю) для 
тріщин різної довжини. Чутливість до переміщення 
поблизу краю дефектів пропорційна їх розмірам, 
тобто для протяжних дефектів можливе більш точне 
визначення меж при скануванні. 

 
а) 

 
б) 

Рис. 9. Залежність u від переміщення x вздовж тріщини c 
за різних зазорах ( ––– h=0; – – – h=0,5): а) c=1; б) c=10 

 
Рис. 10. Залежність u від відношення x/c pа різних довжинах 

тріщини ––– с=1; – – с=0,5; −∙−∙ с=0,25; ∙∙∙∙∙∙ с=0,1 

 

Рис. 11. Залежність u від відношення x/c за різних 
довжинах тріщини ––– с=1; – – с=5; −∙−∙ с=10; ∙∙∙∙∙∙ с=25 
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Для визначення сигналу при переміщенні ВСП 
від середини дефекту вздовж Y розраховані залежності 
різних розмірів тріщин (рис. 12) і зазорів (рис. 13).  
 

 
Рис. 12. Залежність u від координати y за різних довжинах 

тріщини––– с=1;  – – с>10;   −∙−∙ с=0,5;   ∙∙∙∙∙∙ с=0,1 
 

Для розглянутої моделі отримані просторові 
розподілу сигналу ВСП при скануванні зразка з 
поверхневою тріщиною, рис. 14. 

 

 
Рис. 13. Залежність u від координати у різних зазорах  
––– – h=0;   – – – h=0,1;   −∙−∙ – h =0,25;   ∙∙∙∙∙∙ – h=0,5 

              а) c=10, h=0;                     б) c=10, h=0,5;                           в) c=1, h=0;                              г) c=1, h=0,5 

Рис. 14. Просторовий розподіл сигналу ВСП  
 

3. Висновки 
У цій роботі отримані аналітичні залежності 

сигналів ВСП від конструктивних та просторових 
параметрів, що дозволяють розширити уявлення про 
закономірності роботи ортогонального 
вихрострумового перетворювача. За допомогою 
розробленої моделі встановлено, що сигнал ВСП 
має максимум при =45°, 135°, 225°, 315°, а форма 
залежності визначається величиною дефекту і 
зазору. При різних співвідношеннях розмірів 
збуджуючої та вимірювальної обмоток ВСП 
спостерігається усунення максимуму сигналу до 
±10°. Показано, що для великих тріщин сигнал ВСП 
мало залежить від їх довжини, проте зі збільшенням 

зазору чутливість до розміру тріщини збільшується, 
а чутливість до зазору впливу істотна для коротких 
тріщин. При невеликих робочих зазорах вибір 
розмірів a1, b1 не є критичним, проте сигнал ВСП 
монотонно збільшується при збільшенні a1 і b1 
пропорційно зазору. У разі збільшення зазору 
чутливість до переміщення ВСП поблизу краю 
дефекту зменшується. Досліджена модель дозволяє 
знаходити просторові розподіли сигналу ВСП під 
час сканування зразка з поверхневою тріщиною. 
Використовуючи результати цієї роботи можна 
здійснити вибір параметрів ортогонального ВСП 
для вирішення конкретних завдань вихрострумової 
дефектоскопії. 
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Mathematical modeling of a layered orthogonal eddy current conversion 

Y.V. Khomyak, T.V. Drozdova, I.K. Kornev, M. S. Noskov 
 

Abstract 
The article presents the results of a theoretical study of the interaction between an eddy current probe (ECP) and a 

ferromagnetic specimen containing a surface crack. The relevance of the study stems from the need to improve the reliability and 
selectivity of eddy current nondestructive testing of metallic components, particularly in cases where conventional ECPs exhibit 
low resistance to variations in lift-off distance, magnetic permeability, and electrical conductivity of the test object. To address 
these limitations, the authors have developed an orthogonal eddy current probe that provides spatial separation of the excitation 
and signal detection functions. A mathematical model of the ECP–crack interaction is proposed, taking into account the surface 
nature of eddy currents and their orientation along the defect. In the model, the probe coils are represented as idealized 
conductors, enabling an analytical description of the influence of geometric parameters of both the ECP and the specimen on the 
output signal. The obtained analytical relationships describe the dependence of the signal amplitude on the probe’s angular 
position, crack size, lift-off distance between the ECP and the specimen surface, as well as on the ratio of the excitation and 
sensing coil dimensions. 

Key words: eddy current probe, sensing coil, defect, ferromagnet, mathematical modeling, crack, inspection, 
electromagnetic permeability, geometric parameters. 
 


