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Abstract

The paper presents a method for determining parameters of equivalent circuits of resistors and capacitors as connection of
two-terminal elements with single linear resistance, inductance or capacitances. The values and uncertainties of these parameters
are estimated using the least squares method for measurements of the frequency characteristic of the module of impedance. This
task is mathematically complicated, because usually you get a system of nonlinear equations, which is not analytically solvable.
To obtain linear equations, it was proposed to use the method by changing variables. This method was previously developed by
authors for the regression of nonlinear functions and has already been successfully used in metrological tasks.
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1. Introduction

In the design and manufacture of electronic circuits,
it is necessary to know the basic parameters of the
equivalent circuits of the components used in them,
including resistors, capacitors and inductors. Determining
these parameters on the basis of measurements of
frequency characteristics of passive components, even for
their simplified equivalent circuits with ideal resistances,
capacitances and inductances, is a complicated task. A
system of nonlinear equations is obtained, which usually
has no analytical solutions. In the literature on the
analysis of equivalent schemes of these elements, no
methods for estimating the values and uncertainties of
indirect measurement results described by nonlinear
functions have been used, e.g. [2-6].

Equivalent diagrams of a resistor and a capacitor
with 5 ideal linear single-parameters as resistance R,
inductance L and capacitance C were considered by
Kubis and Warsza in papers [7-13]. From measurements
of the modulus of impedance of these schemes at
several frequencies, they determined values of their 5
parameters using the numerical Monte Carlo method,
but without assessing uncertainty.

To determine the values and uncertainties of the
parameters of the equivalent schemes of passive
elements, we propose the use of a method with
linearization of functions by changing their variables. It
simplifies the process of metrological analysis of
systems. The authors presented and discussed this method
at several applications in metrology and measurement
technology at previous national conferences PPM and
MKM and international conferences MathMet, AMCTM
XII and at the IMEKO Congress, and also published [14-
22]. This method will be used below to determine the
values and to evaluate the accuracy of the linear
parameters of the simplified equivalent scheme of the

resistor with only three parameters R, L, C and the square
impedance components of the capacitor with two
capacitances and three resistances.

The examples will use the results of measurements
of the impedance module of both passive components
for n = 10 frequencies. For the resistor, the frequency
responses, nominal and adjusted to the parameters of the
system (WTLS) with an uncertainty corridor and three
parameters of the schematic will be determined. For the
capacitor, the resistive and reactance components of its
impedance are matched, and their uncertainties are
determined by the law of propagation LPU.

2. Description of the variable-change
linearization method

In the linearization method described below, for a
nonlinear function y = f(x) a linear equation is created
in new Cartesian coordinates &, 5, which takes the form
of

Uy, B) = 6:8(x,B) + 6. (1)

After changing the coordinates x,y on &\ can be
adjusted the parameters of the equation (1) using the
linear regression (1) to the measurement data of the
tested points according to the criterion WTLS least
squares. All parameters of the fitted curve are given by
the vector p =[04,0,,B]7. A criterion function is
specified by errors in the new coordinates denoted by n-
dimensional vectors A§and Ay by the covariance
matrix U size of 2n x 2n:

_ (2] [ A%
e e e
where: U is the symmetric covariance matrix for the
new coordinates § and .

(1a)
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This matrix is formed by both sides’
multiplication of the covariance matrix for x and y by
diagonal matrices of first n elements as derived values
&' (x, B) and about the next n elements Y'(y, B). Inverse
covariance matrix U~! denoted by elements of this
quadratic matrixes Uqq, U1y 1 Uyy,size of nxn i.e.

Uiy U1z]

U=
U{Z UZZ

(1b)

A minimum search is a state in new coordinates
that meets the following conditions:

gy _ Obgy _
T 0 and 30, 0. (2a,b,¢)

_ gy _
Ve, by =55 =0
The first of these conditions only is analytically
solvable. The local minimum of the inverse of the

effective covariance matrix can be obtained for:
U;elff = Uy — (UT, + aUs,) T™1(Uqz + alUyy), (3)

where T = Uy + 6, (UT, + Uyz) + 6,°Uy;.

Effective inverse covariance matrix U ,7;” is
diagonal when it is assumed that correlations occur only
between coordinates at measurement points with a
correlation coefficient p. Then the diagonal elements of
Uyess specifying the variance (the square of the
effective uncertainty) are given by the expression:

ugpy = 07U () — 26, pu®uy) + W), )
where u(8) = [&'(x, B)uCx); u(W) = [W'(y, B)lu®).

The criterion function is quasi-quadratic, i.e.:
bye(8,) = 02 (sEE - %) + 2% - 5, ) 0 + Sy — % )
where: S = 1T U {1 = 31, ST [ uyorrlyy > 0,
Sg = U1 =10y 8, S = E Uy %,
Sy =CTUy 1 = 17U [P, Syy = $TUyoss W,
and 8y = (Sy — 0; S)/S.

Vectors &, W about the size n x 1 are determined
by the coordinates of the measurement points X =
[x1, .. %], Y = [y4, ..., ] T through transformations of
functions §(x, B), W(y, B) with initial input parameters
B = Byo- It is also assumed that random variables x and
y are not correlated. In cases where the 8 is a one-
dimensional vector with the value f3, a two-dimensional
criterion function is obtained. A typical chart of this
chart is shown in Fig. 1.

A general flowchart for the determination of the
standard and extended uncertainty for the parameterized
curve is given in Fig. 2. In the first phase, the
parameters of the curve are adjusted using the least
squares method, assuming that both the coordinates of
the measurement points and the covariance matrix are
known, in the second phase, by numerical

differentiation of the curve parameters, the covariance
matrix of the parameters is determined.

Fig. 1. Graph of typical criterion function in
two-dimensional input area 84,

From the analytical derivatives with respect to the
parameters of the parameterized curve, the coverage
interval at each point of the adjusted curve is obtained.

¥, ya | [ T
o= . sl | [AX -1 [AXY
X o s X L“I I::} L}.YI Ut [ﬂ..'!’ “”“]__]:L
af : af T irﬁ; ﬁ?_]'r“"]‘?.'.'i
“lf-[r‘--ﬁ) = {5} u;rlp:ﬁ [EJ —L

{ Bytop = L2 201 [o2 2
N7 — mele=P = [ax ay]” [aX'ay

| U, = . uy (2, p)

Fig. 2. Scheme for determining the least squares fit uncertainty
corridor

This diagram shows that it is possible to determine
the standard and expanded uncertainty at any point in the
curve to be fitted. Uncertainty of all m-parameters
P = [p1, ..., Pm]" shall be estimated according to the Law
of Propagation of Uncertainty (LPU), as the product of the
input covariance matrix (generally of the size 2n x 2n)
U;, is multiplied by both sides of the matrix C including
the sensitivity coefficients (generally of the size m x 2n):

Up =CU,CT. (6)

The sensitivity coefficients, as the first derivatives,
are calculated by numerical differentiation of each
parameter p; (i =1,..,m) according to all input
quantities (generally there are 2n differences for each
measurement point x;,y;). The first derivatives are
estimated from the formula:

C.. = op; __ pi(Zj+AZj)—pi(Zj—AZj)
= o, ™ 28z, ’ )
j j

where: i = 1,...,m, j=1,..,2n, whereas z; is one of
the coordinates of the measurement (x; , y;).

The increment values are selected to meet the
requirements for assessing the values of the first
derivatives with respect to Az; for Az; < z;. When all
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parameters are directly the actual parameters of the
curve to be fitted, then the standard and extended
uncertainty is obtained from the LPU:

uf(x) =SUpSTand U=t, « _u

e _ )
12,nmy

(8a,b)

9y
P
1 x m containing the sensitivity coefficients.

The sensitivity coefficients are determined
analytically as the first partial derivatives with respect to
the parameters of the system with matched values and for
selected values x.

The diagram in fig. 2 does not include the method of
changing variables used in the analyzed examples,
described above. This method simplifies the adjustment of
the parameters of the curve described by the nonlinear
function, because in the new variables, when the least
squares criterion is used, the criterion function is
minimized.

The equation describing the curve in the new
variables is equivalent to the equation in the original
coordinates x and y. The values of a criterion function
in the new variables are close to the original values of
this function if both new variables are dependent
individually on the original variables according to
formula (1). If each of the new variables depends on
both primitive coordinates, then the new values will be
different from those for the primitive variables.

a . . .
where S = , #] is a vector with a size of
m

3. Parameters of the resistor and their
uncertainties

The subject of the research will be parameters of
the real resistor equivalent circuit shown as diagram in
fig. 3. This circuit consists of two parallel branches. In
the upper one there is a resistance R and two equal
inductances L connected in series with it, each with an
imaginary component of the impedance jwL. The
impedance of this branch is 2jwL + R and it is
connected in parallel with a capacitor with capacitive
reactance 1/jwC.

L
A L % B
o e NV e 1 o W, ¢
C
| |

Fig. 3. Equivalent diagram of the resistor under test

The complex impedance Z the two terminals A B
circuit replacing the actual resistor is:

1 _ 2jwL+R
T 12 wllCtjw ®

- jwc+m
Square of the module |Z| of impedance Z is

described by the expression

1Z|2 = 4w2L2+R?
(1-2 w2LC)2%+ w2R2¢c2 "’

(10)

The following transformations will be performed:
multiplying both sides of the equation (10) by the
denominator of the left side of equation (9), transferring
the term |Z|?w?R?C? to the right side and dividing both
sides, by the 1-|Z|2w?C?. This gives a linear equation in
the new coordinates of the form:

Y = 0,5+ 0, (11
where: ©, =R?, 0, =L, and for 1 — |Z|*w?C? # 0
new variables 5, & are defined as follows:
4w3L
1-1Z|2w2¢c2”’

&(w,|Z],0) =

1Z|?(1-2 mzLC)Z

W(,121,L,0) = ALt

(11a,b)

From measurements of the impedance module |Z|;
at n points with a frequency w; = 2mf; (specified for
fi), parameters R, L, C of the equivalent circuit shall be
determined. The parameter to be adjusted is f = C, at
the characteristics of the criterion function are deleted
&gy (0,) containing the local minimum.

Uncertainties of new variables & and |y depend on
the impedance module |Z|, on the frequency of w =
2mf and on the correlation between them determined by
the coefficient p. They are determined from the LPU
uncertainty propagation law in the formula:

2®  pu@u@)|_ [uiw@) 0 |
oty i =€ o u2<|Z|>]G

where: G — is the Jacobian matrix of first derivatives —
i.e. the sensitivity coefficients and is of the form

G = [ai/af aE/OIZI]
op/of oy/a|Z|l”

The uncertainties of the new variables are:

8wL
(- |ZPwiC?)?
2|1Z||11 - 2 w3LC
'”—‘”l [2(1ZD (1 = 2 w?LC)? +
(1-1z)2w2c%)

+u?()w?C?|Z|12(|Z]>C(1 + 2w%LC) — 4L)?]%5. (14 a,b)

-(12)

(13)

u(®) = Vut(w) +ut(1ZD)|Z[2wsc?,

u(p) =

The covariance part containing the correlation
coefficient is of the form:

puu(®) =

16(1-2 w?LC)w?|Z|2LC
(1—|z|2m202)4

—2 W2LC) + u?(w)(|Z2C(1 + 2w?LC) — 4L)]. (15)

[W*(1ZDw?C(1 -

Used in (4) effective inverse covariance matrix
U;elff is diagonal and the effective measurement
uncertainty is given in the formula:

uZep = 02u (%) — 260, pu®u(y) + u?W). (16)

The nominal values of the equivalent circuit
parameters are as follows: L =1 nH, C =350 pF, R =1 Q,
the data obtained from the measurements are presented
in Table 1.
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Table 1 — Values of measured frequencies and impedances at
the measuring points

No 1 (213 |4]|5[6]7|8]9]10
f,MHz|145 |160 |175 190|205 |220|235 |250 |265 (280

|Z], Q |3.93 |4.87|5.81(6.2 |5.76 (5.0 |4.23 3.62|3,13|2.75

The standard frequency  uncertainty  is
u(f) = 1/v/3 Hz and the impedance module |Z| is
measured with relative uncertainty 8§(|Z|) = 2 %.

Standard uncertainties for three parameters
v = [R, L, C] estimate by law their propagation LPU

] ]
u?(v) = By w? (D) (G5 lp=r)? + w2 (1210 G lizi=1z1)* (17,
. . ov ov
where the sensitivity coefficients FY: and P
determined numerically.

As a result of parameter matching 3 = C charts
received ¢y (0;) quasi-quadratic criterion function,
where the global minimum is estimated approximately
as Qg globalmin ~ 0,182 for L = 0,992 nH. It is being
shown on Fig. 4.

Dy

4.0 I
3.5 \ /
3,0 g
2.5
2.0 %
L3
10 /
0.5 \-.____-'

i}
0,975

0,980 0985 0990 0,995 1.000 L.nH

Fig. 4. Variable-dependent criterion function ©; = L

Parameter value = C corresponding to the global
minimum of € = 352 pF. The matched value received
C =0,985 0.

Calculations of mean values of parameters are
performed in EXCEL and in the R environment, and in
addition, the covariance matrix, correlator matrix and
uncertainty are obtained from a properly prepared script
in R. From the numerical experiment the matrix U,
Matching parameters of the form:

1,91 -107*Q% 4,09- 10"*#QH 1,03-10"! QF
U, =(409- 107QH 43-1072 H* 14107%HF | (18)
1,03-107*QF 1,4 10"23HF 6+ 1072*F?
and is bound to the correlator matrix
1 0,45 0,3
v=|o45 1 0,9]. (19)
0,3 0,9 1
From this correlator matrix, it follows that
inductance and capacitance (0,9) are positively

correlated, followed by inductance with resistance (0.45)
and resistance with capacitance correlate weakly (0,3).
Diagonal elements of a matrix U, are squares of
standard uncertainties and hence they follow:

R =0,985 (0,0138) Q, (1,4%);

L =0,992(0,0066) nH (0,66%);

C =352 (2,44) pF (0,7%).

The uncertainty of standard parameters of the
equivalent resistor scheme and their mutual correlations
also results in the standard uncertainty of the frequency
response corridor and the expanded uncertainty
u?(1Z|(w)) = SU,ST, U(1Z|(w)) = tl_%’n_mu(|Z|(u))).

Assumed is: a = 0,05, n = 10, m =3,

t =2,36.

1-295 403
The elements of the vector were also determined,
which are analytical partial derivatives of the impedance

modulus and sensitivity coefficients § = [M,M,M
R’ L’ aC
with the following formulas:
91Z] _R(1 - 4w?LC)
orR ~ z' ’
01Z] 20w*(2L — 4w’L*C + R%C)
oL z' '
31z _  0*(40*L?+R?)(R*C-2L+4w’LC)
= P , (20a,b,c)

where

7 =1Z|[(1 - 2 w2LC)? + w?R2C?2.  (21)

Figure 5 shows respectively: measurement points,
the nominal and matched frequency response of the
impedance module |Z| with corridors of standard
uncertainty u(|Z|) and expanded uncertainty U(|Z|).

0
6. it
3.0 - 5
X x,
55 ‘e .
535 ¥, o}
“ l"
50 5 \c\
s .
45 3 * MCASUre: 3 x~
2 cment points %
a0l -- noninal eharacteristic o8
fitting characteristic -~
3.5 i Koo
0 th L
.
25
145 165 185 205 213 245 265 f. MHz

Fig. 5. Measuring points, nominal and matched impedance
frequency responses

Figure 6 shows the fitting errors and the standard
and expanded uncertainty corridors in relative units for
the impedance modulus |Z| as a function of frequency
with measurement points.

B4}, Yo
3

3

pUTRTT

-
= _:_ e
0 5 e
-1 = ——

4 — it | e —

4

145 |65 183 05 225 245 265 f MHz

Fig. 6. Standard and expanded coverage corridor relative
uncertainty and relative error
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The uncertainty corridor of the impedance module
|Z|, over the entire range of characteristics under study
varies from 2,5 % to less than 5 %. Its narrowest width
occurs for the rising edge of the impedance modulus,
i.e. for about 170 MHz, and the widest — for about 220
MHz, i.e. after reaching the maximum value for the
falling edge of the characteristic.

4. Determination of capacitor model
parameters from impedance components

The multi-element equivalent circuits are used in
modeling and descriptions of frequency changes of
components of capacitors’ impedance. Such a scheme
with three ideal resistances and two capacitances is on
the figure 7.

Values R, C do not depend on the frequency. It is
used for AC in the frequency range of 10 Hz to 10 GHz.
Monte Carlo tests with it was made for the range 10Hz -
100 kHz in works [7-13].

Fig. 7. Diagram of capacitor replacement circuit

Impedance Z the two ports A B for each frequency
is described in complex numbers as:

Z = ReZ + jImZ, (22)

where components: resistance ReZ and capacitive
reactance ImZ = —1/wC.

Impedance Z between two-terminals AB shall be
measured directly or shall be determined from the
voltage Uy, current Iy and the angle of their phase
difference at each given frequency.

In our considerations parameters of the capacitor
model were adjusted to the results of measurements of
alternating current components with five frequencies
using the least squares method. Then numbers of the
measured points and their parameters are n = 10 and
m = 5. The results are given in Table 2.

Table 2 — Measurement data of frequency and corresponding
impedance components of the resistor and capacitor schemes

Lp | 1 2 3 41 5 6 7 8 9 |10
ﬂ’z 10' (10 [10° [10* |10° [10° |107 |10% |10° |10'0
ReZ,
kQ
C,
nF|

508,3(65,61 | 1,107(0,0113]0,0003 |0,0002{ 0,0002{ 0,0002{ 00002{ 00002

84761 6,006 | 5,0155,000 |50005| 5,000(5,000 |5,000|5,000| 5,000

The capacitor equivalent circuit from Fig. 7
contains a resistance R; connected in series with
parallel connected resistance R capacity C, and branch
of connected in serial C; and R4, i.e. of impedance

1 _ 1+](1) R]_ Cl
jw €y '

Ry + o

Hence
jo €y

1 1
1+jw Ry Cq

—_—= jo C,
ReZ—-Rg+jImZ ~ R, tjwlo +
After transforming the terms into complex
numbers, i.e. after multiplying the denominators and
numerators by conjugating expressions to their
denominators, we get

ReZ — R, . ImZ _
(ReZ — R, +Imz2 ' (R—Ry)? + Imz?

(23)

1 w?Cc?R . c
=—+—1212+1w(co +ﬁ)-(24)
Ry 1+w2R% (2 1+w?2 R? (2

The equality of the real and imaginary components
of both sides of the expression (24) results in two
equations:

ReZ — Ry _ 1, w? CiR,
(ReZ —Ry)?>+ImZ2~ R, 1+ w?R?C?
ImZ 1 1
" "® (ReZ—Rg?+Imz2 Cot+ G RZ cZ’ (25a,b)

The equations (25a,b) in the new variables are
linear with the parameters f; = R, and [, = Ry, i.e.:

Y1(B2) = -+ Gi&i(B)
and

V,(B2) = Co + C18:(B1)

The abscissa and elevations in the new variables
are as follows:

(26a,b)

£, = 031'2 C1By
YT 1+ w?p2 CE
and

1

T Tre?pic?’
_ ReZl' - Bz
"~ (ReZ; —B,)? + ImZ?

S2i

(27a,b)

Wi

and
—ImZi/u)i

lIJZL = (REZi _BZ)Z+I le " (28a,b)

From the law of error propagation follows the
propagation of uncertainty according to LPU:

2C. B w;
u(§y) = mu(wi);
2CE B
u(&y) = mu(wi) = C1B1u(E1i),
iP1 ™~
1
u(Py) =

[(ReZ; — B,)? + ImZ?]?
«{ImZ; — (ReZ; — B,)?*1*u*(ReZ;) +
+ 4ImZ?(ReZ; — B,)*u?(ImZ;)}*%;  (29a,b,c)
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1
w;[(ReZ; — B,)? + ImZ}]?
* (ImZ?[(ReZ; — B,)? + ImZ?]*u?(w;)/w? +
+4(ReZ; — B,)*ImZ?*u?(ReZ;) +
+[(ReZ; — B,)* — ImZ?]*u?(ImZ,)}°5.

Assuming that measurements of both components
are subject to uncertainties 6(ReZ;),6(ImZ;) < 1%
(i=1,..,n) and that the uncertainty of frequency
measurement u(f) < 0,58 Hz, criterion functions are
obtained ¢,(C;), $,(C;) shown in figure 8. They are
determined from formula (4), for matrices inverse to
effective covariance matrices for uncorrelated input
quantities  as  uirr = 07u*(®) +u*(P).  New
variables §;, {; and §&,, Y, despite, that &, and
Yy, depend on the w, they are practically uncorrelated.

The global minimum shall be obtained for
B1=R;=1MQ and f,;=R;=0,2 Q. Number of
measurement points n = 10, and number of parameters
m = 5. Received:

- minimum values of criterion functions

$1min(C1)< 0,015, Gomin (€1)< 0,0001;

u(Py) =

(29d)

- adjusted parameter values: C; = 3 nF,
Co = 5,000055 nF, Ry = 9,999608 MQ.
di(C1)
0,5
0.4
0.3
0,2
0.1
0
2.8 2.9 3.0 3.1 Cy, nF
_ 2)
ba(C)
0,10
0,08
0,06
0,04
0,02
0
2.8 2.9 3.0 i1 C.nF
b)

Fig. 8. Graphs a) and b) of the criterion function for
equations (26a) and (26b)

The wuncertainties and correlations between
quantities are due to the law of propagation of the
uncertainty of the covariance matrix Up, quantities, i.e.
for the parameters of the:

U,(C1, Ry, Co, Ry, Ry) = CU,,CT. (30)

Diagonal matrix U;, has a size3nx3n. For
uncorrelated input quantities, it contains the following
squares of uncertainty as elements: u?(f;) for
frequencies, u?(ReZ;)for the actual impedance
component and u?(Im Z;) for the imaginary impedance
component. Matrix C sensitivity ratios of size m x 3n is
the matrix of Jacobian. It is obtained by numerical
differentiation of all parameters m = 5 due to 3xn
input values. Symbolically, this is written as

¢y acy ac; acy ac; acy
ofy " of oRelzl; " ORelzl, a1 |z, T dmiZly

=l - - .(30a)
Ry 0R1 R, R, R,
afy " afy dRelzl; " ORelZlp  arm|zl, : Blm\ZI-ﬂ

Parameter covariance matrix U, (Cy, Ro, Co, Rq, R1)

is both sides product of the correlator V and matrix Q
size of 5x5,1.e.:

Up=Q"VQ, (30b)
where
[uc) 0o 0 0
[0 u(Ry) O 0 0 |
0= | 0 0 u(C) 0 o I
0 0 u(Rg) 0 |
lo 0 o 0 uR)l

From this relationship, the values of the elements
of the correlator matrix are obtained V described in the
form of table 3.

Table 3 — Correlator matrix V data

Cy R, Co Ry R,
C, 1 0,69 | 008 | 0,013 | 022

R, | 0,69 1 025 | -002 | 064

Co | 0,08 | -025 1 0,035 | -046
R, | -0,013 | -0,02 | 0,035 1 -0,023
R, | 022 | 064 | -046 | -0,023 1

Table 3 shows that measurements of impedance
components as a function of frequency lead to a strong
positive correlation between the resistance R, and
capacity C; (0.69), resistances R, and R, (0.64) and to the
weak correlation between the capacity of the C; and
resistance R; (0.22). A negative correlation occurs
between the capacity of the C, and resistance R; (-0,46)
and as weaker for capacity C, with resistance R, (-0,25).
The other pairs of elements are practically uncorrelated.

The uncertainties of elements of the capacitor
equivalent diagram are described by the formula:

n

ut(w) = Z[u (ﬁ)( of |f I+

i=1

+u2(ReZ )(E)Rel |ReZ ReZ) +

+u2(ImZ)(aI Zl]mZ ImZ) ]

where: w = {Cy, Ry, Cy, R4, R1}.

The results of measurements of the elements of the
equivalent diagram along with their uncertainties are as
follows:

€3]

10
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C, = 5,000055(0,017) nF (0,34%); 82D, %
R, = 9,9996 (0,78) MQ (7,8%); 6]
¢, = 3(0,19) nF (6,33 %); 5
R, = 1(0,016) MQ (1,6 %); J
Ry = 0,2 (0,0015) 2 (0,75%). \ — relative error, %
The standard uncertainty of the impedance relative stmderd sty

module, i.e. the width of its coverage corridor, is
calculated from the uncertainty propagation law as:

u?(1Z|(w)) = SU,ST, (32)

where: sensitivity vector S size of 1 x m is derived
analytically — see Appendix A.

The expanded uncertainty is described by the
formula:

u(1z|(w)) = tl_g_n_mu(lll(w))- (33)
In the numerical experiment discussed here, the:

@=005,7=10,m=5, t, ous, ( =257.

The frequency characteristics of impedance on the
logarithmic, nominal and fit scales, together with the
measurement points and additionally relative errors, are
given in Figures 9, 10 and 11. Figure 11 shows that the
width of the aisle (expanded uncertainty) is slightly
below 1% in the range 5-(10> — 10%) Hz. At the
beginning of the measurement range, the width is the
largest and decreases from slightly above 5 % to 1 % in
the range from 10 Hz to 500 Hz. In the range from 100
MHz to 1 GHz it increases from 1% to 2 % and up to 10
GHz it is at 2% of the value of the impedance module.

7], MO
2.0
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L5 -- fitting curve
| U+
I. [ N
1.0 '\I —
|
|
\
I\.
0.5 %
j(.
g
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Fig. 9. Frequency impedance characteristics of the capacitor
model with measurement points as nominal and fit curves
(logarithmic scale on the frequency axis)
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Fig. 10. Log-log frequency response of capacitor schematic
impedance

— relative expanded uncertainty
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Fig. 11. Relative standard errors and the standard and expanded
relative uncertainty of the impedance measurement of the
capacitor equivalent diagram (logarithmic frequency scale).

5. Summary

This article introduces a method for fitting
nonlinear curves to the data for measured points. It uses
the change of variables to obtain linear relationships
fitted according to the weighted least squares criterion
of WTLS. After changing the variables in this way, you
can also use straight line regression. The uncertainty of
the coordinates of the measurement points is also
considered, as well as their correlations, if they occur in
the measurements.

The condition for using this method approximates
the propagation of errors and measurement uncertainty,
acceptable in metrology, using the first derivative of the
transformation function. If the points under study are
not too far from the nonlinear sought function, and the
uncertainty of the data measurement is not too high, e.g.
below 5%, then this method can be used successfully.
The limitations are therefore the same as estimating the
accuracy of measurements by the international GUM
guide [1].

The method also allows to determine the
uncertainty corridor for a nonlinear function fitted to the
measurement data. It has already been used in the
authors' papers [14-20] for several different examples of
measurements with the change of one and both
coordinates of a nonlinear function. Computational
examples of fitting various nonlinear functions to given
measurement points, including implicit functions, are
presented. They showed that the method of changing
variables is universal if the new variables are properly
selected.

In literature, e.g. [2-6], simple examples of
linearization of the function describing measurements
are usually considered. There was no discussion of the
method of fitting nonlinear functions with linearization
by changing variables, nor a discussion of how to
determine the boundaries of their uncertainty band
without correlation and with correlations.

The examples considered in this paper use the
results of measurements of the impedance module of
resistor and capacitor equivalent circuits in n=10
frequencies. From them, the frequency characteristics of
the impedance module were determined, nominal and
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adjusted to the parameters of the system using the The method used in this work for nonlinear
WTLS method along with its uncertainty corridor. For  functions can be fully useful in measurement practice. It
the capacitor, the resistive and reactance components of  is also worth considering the possibility of using it in
the impedance of its equivalent scheme were matched the internationally developed extended version of the
and their uncertainties were determined using the law of ~ GUM guide.

their propagation, i.e. the LPU method.
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Supplement

Below are the analytically determined partial derivatives of the capacitor's equivalent impedance modulus for
all parameters of the equivalent schematic elements. Impedances are represented as a series combination of

1
resistances R; and complex impedance ——:

A+ B
=—+ Al
A+ jB A1)
where
_ 1 R1 _ 1 (A)ZC%R]_ _ Cl )
A=t = iy W B =0 (Co + e (A.2) and (A.3)
w?C%
The partial derivative with respect to R, for impedance square Z2(Z = |Z|),1.e. ai =2Z ;TZ, where
d
4 1022 _1( A
ot =290 = 7 e + Ra) (A.4)
and similarly, derivatives with respect to Ry, Cy i R;:
oz 1 0z2 1 A+(A%2-B?)Ry
dRy 2Z 3Ry ZRZ (A2+B2)2
oz 1 022 wAB
3o =96 = ~ 7o (3 2Ra) 4.6
9z _ 1 02* _ w?Ccf(Ra((B*-4%)(1 ~w?C{R)+4ABw 1R1)-A(1-w?C{R 2)+ZBQ)C1R1) A
R,  2Z aR1 Z(A2+B2)2(w2C2R?+1)2 (A7)
Derivation of the derivative with respect to C;:
9z _ 109z ZcoClRl(Rd(BZ—AZ) —A)—(2ABRg+B)(1-w?Cf R%) A$)

ac,  2zac, Z(A2+B2)2(w2C2R3+1)?2
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BuzHauyeHHs MapaMeTpPiB eKBiBaJIEHTHHX CXeM Pe3MCTOPiB Ta KOHIEHCATOPIB 32 BUMiPIOBAHHSIM YACTOTHUX
XapaKTepPUCTHK iX iMIenancy
3urmynn JI. Bapma, Snek ITyxanbcbkuit

AHoTauis

VY crarTi IOpeACTaBICHO METOI BH3HAYCHHS NApaMeTPiB €KBIBAJEHTHHX CXEM DPE3HCTOPIB Ta KOHIEHCATOPIB MIIIXOM
3'€/IHaHHS JBOBMBIJIHMX €JIEMEHTIB 3 OAMHUYHUM JIiHII{HUM OIOPOM, IHAYKTHBHICTIO 200 €MHICTIO. 3HAUEHHS Ta HEBU3HAYEHOCTI
IMX [apaMeTpiB OIIHIOIOTHCS 3a JONOMOTOI METONy HaiMEHIIMX KBaApaTiB Ul BUMIPIOBaHb YaCTOTHOI XapaKTepPHCTHKH
MoxyJist imrnenaHcy. Lle 3aBnaHHs € MaTeMaTHYHO CKJIaJHUM, OCKUIBKH 3a3BHYail OTPUMYETHCS CHCTEMa HENiHIHUX PiBHSAHB, sKa
aHaJIITUYHO He pO3B's3yeTbcs. I OTpHMaHHs JiHIHHMX pPIiBHSHB Oya0 3alPOINOHOBAHO BHKOPHCTOBYBAaTH METOX 3aMiHM
3MiHHuX. Lleit Meros OyB paHilie po3poOiaeHHid aBTOpaMK ISl perpecii HemiHIHHUX (QyHKII i BXe YCHIIIHO BUKOPUCTOBYETHCS B
METPOJIOTIYHHX 3a]adax.

Kuro4oBi ci10Ba: cxemMu 3aMillieHHs], OTTip, EMHOCTI, iIHAYKTHBHICTb, YaCTOTHA XapaKTEPUCTHKA, MOIYIIb IMIIECIAHCY.
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