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Abstract 
The paper presents a method for determining parameters of equivalent circuits of resistors and capacitors as connection of 

two-terminal elements with single linear resistance, inductance or capacitances. The values and uncertainties of these parameters 
are estimated using the least squares method for measurements of the frequency characteristic of the module of impedance. This 
task is mathematically complicated, because usually you get a system of nonlinear equations, which is not analytically solvable. 
To obtain linear equations, it was proposed to use the method by changing variables. This method was previously developed by 
authors for the regression of nonlinear functions and has already been successfully used in metrological tasks. 
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1. Introduction  

In the design and manufacture of electronic circuits, 
it is necessary to know the basic parameters of the 
equivalent circuits of the components used in them, 
including resistors, capacitors and inductors. Determining 
these parameters on the basis of measurements of 
frequency characteristics of passive components, even for 
their simplified equivalent circuits with ideal resistances, 
capacitances and inductances, is a complicated task. A 
system of nonlinear equations is obtained, which usually 
has no analytical solutions. In the literature on the 
analysis of equivalent schemes of these elements, no 
methods for estimating the values and uncertainties of 
indirect measurement results described by nonlinear 
functions have been used, e.g. [2-6].  

Equivalent diagrams of a resistor and a capacitor 
with 5 ideal linear single-parameters as resistance R, 
inductance L and capacitance C were considered by 
Kubis and Warsza in papers [7-13]. From measurements 
of the modulus of impedance of these schemes at 
several frequencies, they determined values of their 5 
parameters using the numerical Monte Carlo method, 
but without assessing uncertainty. 

To determine the values and uncertainties of the 
parameters of the equivalent schemes of passive 
elements, we propose the use of a method with 
linearization of functions by changing their variables. It 
simplifies the process of metrological analysis of 
systems. The authors presented and discussed this method 
at several applications in metrology and measurement 
technology at previous national conferences PPM and 
MKM and international conferences MathMet, AMCTM 
XII and at the IMEKO Congress, and also published [14-
22].  This method will be used below to determine the 
values and to evaluate the accuracy of the linear 
parameters of the simplified equivalent scheme of the 

resistor with only three parameters 𝑅, 𝐿, 𝐶 and the square 
impedance components of the capacitor with two 
capacitances and three resistances.  

The examples will use the results of measurements 
of the impedance module of both passive components 
for 𝑛 = 10 frequencies. For the resistor, the frequency 
responses, nominal and adjusted to the parameters of the 
system (WTLS) with an uncertainty corridor and three 
parameters of the schematic will be determined. For the 
capacitor, the resistive and reactance components of its 
impedance are matched, and their uncertainties are 
determined by the law of propagation LPU. 

2. Description of the variable-change 
linearization method  

In the linearization method described below, for a 
nonlinear function 𝑦 = 𝑓(𝑥) a linear equation is created 
in new Cartesian coordinates ξ, ψ, which takes the form 
of 

ψ(𝑦, 𝛃) = θଵξ(𝑥, 𝛃) + θ଴.                   (1) 

After changing the coordinates 𝑥, 𝑦 on  ξ, ψ can be 
adjusted the parameters of the equation (1) using the 
linear regression (1) to the measurement data of the 
tested points according to the criterion WTLS least 
squares. All parameters of the fitted curve are given by 
the vector   𝒑 = [θଵ, θ଴  , 𝛃]T. A criterion function is 
specified by errors in the new coordinates denoted by 𝑛-
dimensional vectors 𝚫𝛏 and 𝚫𝛙 by the covariance 
matrix 𝑼 size of 2𝑛 x 2𝑛: 

ϕஞந = ൤
𝚫𝛏
𝚫𝛙

൨
𝑻

𝑼ି𝟏 ൤
𝚫𝛏
𝚫𝛙

൨,                       (1a) 

where: 𝑼 is the symmetric covariance matrix for the 
new coordinates ξ and ψ.  
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 This matrix is formed by both sides’ 
multiplication of the covariance matrix for x and y by 
diagonal matrices of first n elements as derived values 
ξᇱ(𝑥, 𝛃) and about the next n elements ψ′(𝑦, 𝛃). Inverse 
covariance matrix 𝑼ି𝟏 denoted by elements of this 
quadratic matrixes 𝑼𝟏𝟏, 𝑼𝟏𝟐 i 𝑼𝟐𝟐,size of 𝑛 x 𝑛 i.e. 

𝑼ି𝟏 = ൤
𝑼𝟏𝟏 𝑼𝟏𝟐

𝑼𝟏𝟐
𝑻 𝑼𝟐𝟐

൨.                        (1b) 

A minimum search is a state in new coordinates 
that meets the following conditions:  

𝛁𝛏𝒑
ϕஞந =

𝝏மಖಠ

𝝏୼𝛏
= 𝟎, 

డமಖಠ

డ஘భ
= 0 and 

డமಖಠ

డ஘బ
= 0.  (2a, b, c) 

The first of these conditions only is analytically 
solvable. The local minimum of the inverse of the 
effective covariance matrix can be obtained for: 

𝑼𝒀𝒆𝒇𝒇
ି𝟏 =  𝑼𝟐𝟐 − ൫𝑼𝟏𝟐

𝑻 + 𝑎𝑼𝟐𝟐൯ 𝑻ି𝟏(𝑼𝟏𝟐 + 𝑎𝑼𝟐𝟐), (3) 

where  𝑻 = 𝑼𝟏𝟏 + 𝜃ଵ൫𝑼𝟏𝟐
𝑻 + 𝑼𝟏𝟐൯ + 𝜃ଵ

𝟐𝑼𝟐𝟐. 
Effective inverse covariance matrix 𝑼𝒀𝒆𝒇𝒇

ି𝟏   is 
diagonal when it is assumed that correlations occur only 
between coordinates at measurement points with a 
correlation coefficient 𝜌.  Then the diagonal elements of 
𝑼𝒀𝒆𝒇𝒇  specifying the variance (the square of the 
effective uncertainty) are given by the expression: 

𝑢௘௙௙
ଶ = 𝜃ଵ

ଶ𝑢ଶ(ξ) − 2𝜃ଵ ρ𝑢(ξ)𝑢(ψ) + 𝑢ଶ(ψ),    (4) 

where 𝑢(ξ) = |ξᇱ( 𝑥, 𝛃)|𝑢(𝑥);   𝑢(ψ) = |ψ′(𝑦, 𝛃)|𝑢(𝑦). 

The criterion function is quasi-quadratic, i.e.: 

ϕநஞ(θଵ) = θଵ
ଶ ൬𝑆ஞஞ −

ௌಖ
మ

ௌ
൰ + 2 ቀ

ௌಖௌಠ

ௌ
− 𝑆ஞநቁ θଵ + 𝑆நந −

ௌಠ
మ

ୗ
,       (5) 

where:  𝑆 = 𝟏𝑻 𝑼𝒆𝒇𝒇
ି𝟏 𝟏 = ∑ ∑ [ 𝑢௒௘௙௙

ିଵ ]௜௝ > 0௡
௝ୀଵ

௡
௜ୀଵ , 

 
 𝑆ஞ

= 𝛏𝑻𝑼𝒀𝒆𝒇𝒇
ି𝟏 𝟏 = 𝟏𝑻𝑼𝒀𝒆𝒇𝒇

ି𝟏 𝛏,      𝑆ஞஞ = 𝛏𝑻𝑼𝒀𝒆𝒇𝒇
ି𝟏 𝛏, 

𝑆ந = 𝚿𝑻𝑼𝒀𝒆𝒇𝒇
ି𝟏 𝟏 = 𝟏𝑻𝑼𝒀𝒆𝒇𝒇

ି𝟏 𝚿,    𝑆நந = 𝚿𝑻𝑼𝒀𝒆𝒇𝒇
ି𝟏  𝚿, 

and θ଴ = ( 𝑆ந − 𝜃ଵ 𝑆ஞ)/𝑆.  

Vectors  𝛏, 𝚿 about the size n x 1 are determined 
by the coordinates of the measurement points 𝑿 =
[𝑥ଵ, … 𝑥௡]𝑻, 𝒀 = [𝑦ଵ, … , 𝑦௡]𝑻 through transformations of 
functions ξ(𝑥, 𝛃), ψ(𝑦, 𝛃) with initial input parameters 
𝛃 = 𝛃𝟎. It is also assumed that random variables 𝑥 and 
𝑦 are not correlated. In cases where the 𝛃 is a one-
dimensional vector with the value β, a two-dimensional 
criterion function is obtained. A typical chart of this 
chart is shown in Fig. 1.  

A general flowchart for the determination of the 
standard and extended uncertainty for the parameterized 
curve is given in Fig. 2. In the first phase, the 
parameters of the curve are adjusted using the least 
squares method, assuming that both the coordinates of 
the measurement points and the covariance matrix are 
known, in the second phase, by numerical 

differentiation of the curve parameters, the covariance 
matrix of the parameters is determined. 

 

 
Fig. 1. Graph of typical criterion function in  

two-dimensional input area θଵ, β 
 

From the analytical derivatives with respect to the 
parameters of the parameterized curve, the coverage 
interval at each point of the adjusted curve is obtained.  

 
 

Fig. 2. Scheme for determining the least squares fit uncertainty 
corridor 

 
This diagram shows that it is possible to determine 

the standard and expanded uncertainty at any point in the 
curve to be fitted. Uncertainty of all 𝑚-parameters                            
𝒑 = [𝑝ଵ , … , 𝑝௠]𝑻 shall be estimated according to the Law 
of Propagation of Uncertainty (LPU), as the product of the 
input covariance matrix (generally of the size 2𝑛 x 2𝑛) 
𝑼𝒊𝒏 is multiplied by both sides of the matrix C including 
the sensitivity coefficients  (generally of the size 𝑚 x 2𝑛): 

𝑼𝑷 = 𝑪𝑼𝒊𝒏𝑪𝑻 .                              (6) 

The sensitivity coefficients, as the first derivatives, 
are calculated by numerical differentiation of each 
parameter 𝑝௜  (𝑖 = 1, … , 𝑚) according to all input 
quantities (generally there are 2𝑛 differences for each 
measurement point 𝑥௜  , 𝑦௜). The first derivatives are 
estimated from the formula: 

 𝐶௜௝ =
డ௣೔

డ௭ೕ
≈

௣೔൫௭ೕା୼௭ೕ൯ି௣೔൫௭ೕି୼௭ೕ൯

ଶ୼௭ೕ
 ,                (7) 

where: 𝑖 = 1, … , 𝑚 ,  𝑗 = 1, … , 2𝑛, whereas 𝑧௝ is one of 
the coordinates of the measurement (𝑥௝  , 𝑦௝).  

The increment values are selected to meet the 
requirements for assessing the values of the first 
derivatives with respect to Δ𝑧௝ for Δ𝑧௝ ≪ 𝑧௝. When all 
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parameters are directly the actual parameters of the 
curve to be fitted, then the standard and extended 
uncertainty is obtained from the LPU: 

𝑢௬
ଶ(𝑥) = 𝑺𝑼𝑷𝑺𝑻 and  𝑈 = 𝑡

ଵି
ഀ

మ
,௡ି௠

𝑢௬,      (8a,b)                     

where  𝑺 = [ 
డ௬

డ௣భ
, … ,

డ௬

డ௣೘ 
 ] is a vector with a size of 

1 x 𝑚 containing the sensitivity coefficients. 
The sensitivity coefficients are determined 

analytically as the first partial derivatives with respect to 
the parameters of the system with matched values and for 
selected values x.  

The diagram in fig. 2 does not include the method of 
changing variables used in the analyzed examples, 
described above. This method simplifies the adjustment of 
the parameters of the curve described by the nonlinear 
function, because in the new variables, when the least 
squares criterion is used, the criterion function is 
minimized.  

The equation describing the curve in the new 
variables is equivalent to the equation in the original 
coordinates 𝑥 and 𝑦. The values of a criterion function 
in the new variables are close to the original values of 
this function if both new variables are dependent 
individually on the original variables according to 
formula (1). If each of the new variables depends on 
both primitive coordinates, then the new values will be 
different from those for the primitive variables.  

3. Parameters of the resistor and their 
uncertainties 

The subject of the research will be parameters of 
the real resistor equivalent circuit shown as diagram in 
fig. 3. This circuit consists of two parallel branches. In 
the upper one there is a resistance 𝑅 and two equal 
inductances 𝐿 connected in series with it, each with an 
imaginary component of the impedance 𝑗𝜔𝐿. The 
impedance of this branch is 2𝑗𝜔𝐿 + 𝑅 and it is 
connected in parallel with a capacitor with capacitive 
reactance 1/𝑗ω𝐶. 

 

Fig. 3. Equivalent diagram of the resistor under test 
 

The complex impedance  𝒁 the two terminals A B 
circuit replacing the actual resistor is:    

𝒁 =
ଵ

௝ఠ஼ା
భ

 మೕഘಽశೃ

=
 ଶ௝ఠ௅ାோ

ଵିଶ ఠమ௅஼ା௝ఠ
 .              (9) 

Square of the module |𝒁| of impedance 𝒁 is 
described by the expression 

|𝒁|𝟐 =
 ସఠమ௅మାோమ

(ଵିଶ ఠమ௅஼)మା ఠమோమ஼మ .              (10) 

The following transformations will be performed: 
multiplying both sides of the equation (10) by the 
denominator of the left side of equation (9), transferring 
the term |𝒁|𝟐ωଶ𝑅ଶ𝐶ଶ to the right side and dividing both 
sides, by the 1-|𝒁|𝟐ωଶ𝐶ଶ. This gives a linear equation in 
the new coordinates of the form: 

ψ = Θଵξ + Θ଴,                       (11)    

where:  Θ଴ = 𝑅ଶ, Θଵ = 𝐿 , and for 1 − |𝒁|𝟐ωଶ𝐶ଶ ≠ 0 
new variables ψ,  ξ  are defined as follows: 

ξ(ω, |𝒁|, 𝐶) =
ସனమ௅

ଵି|𝒁|𝟐னమ஼మ , 

ψ(ω, |𝒁|, 𝐿, 𝐶) =
|𝒁|𝟐൫ଵିଶ னమ௅஼൯

మ

ଵି|𝒁|𝟐னమ஼మ  .          (11a,b) 

From measurements of the impedance module |𝒁|௜ 
at 𝑛 points with a frequency ω௜ = 2π𝑓௜ (specified for 
𝑓௜ ), parameters 𝑅, 𝐿, 𝐶 of the equivalent circuit shall be 
determined. The parameter to be adjusted is β = 𝐶, at 
the characteristics of the criterion function are deleted 
ϕஞந(Θଵ) containing the local minimum.   

Uncertainties of new variables ξ and ψ depend on 
the impedance module |𝒁|, on the frequency of ω =
2π𝑓 and on the correlation between them determined by 
the coefficient ρ. They are determined from the LPU 
uncertainty propagation law in the formula: 

൤
𝑢ଶ(ξ) ρ𝑢(ξ)𝑢(ψ)

ρ𝑢(ξ)𝑢(ψ) 𝑢ଶ(ψ)
൨ = 𝑮 ൤

𝑢ଶ(ω) 0

0 𝑢ଶ(|𝒁|)
൨ 𝑮𝑻, (12) 

where: 𝑮 – is the Jacobian matrix of first derivatives – 
i.e. the sensitivity coefficients and is of the form 

𝑮 = ൤
𝜕ξ/𝜕𝑓 𝜕ξ/𝜕|𝒁|
𝜕ψ/𝜕𝑓 𝜕ψ/𝜕|𝒁|

൨ .                 (13) 

The uncertainties of the new variables are: 

𝑢(ξ) =
 8ω𝐿

(1 − |𝒁|ଶωଶ𝐶ଶ)ଶ ඥ𝑢ଶ(ω) + 𝑢ଶ(|𝒁|)|𝒁|ଶω଺𝐶ସ , 

𝑢(ψ) =
2|𝒁||1 − 2 ωଶ𝐿𝐶|

ቀ1 − |𝒁|2ω2𝐶
2

ቁ
2 [𝑢ଶ(|𝒁|)(1 − 2 ωଶ𝐿𝐶)ଶ + 

+𝑢ଶ(ω)ωଶ𝐶ଶ|𝒁|ଶ(|𝒁|ଶ𝐶(1 + 2ωଶ𝐿𝐶) − 4𝐿)ଶ]଴,ହ. (14 a,b) 

The covariance part containing the correlation 
coefficient is of the form: 

   ρ𝑢(ψ)𝑢(ξ) =
ଵ଺൫ଵିଶ னమ௅஼൯னమ|𝒁|మ௅஼

൫ଵି|𝒁|𝟐னమ஼మ൯
ర [𝑢ଶ(|𝒁|)ωଶ𝐶(1 −  

−2 ωଶ𝐿𝐶) + 𝑢ଶ(ω)(|𝒁|ଶ𝐶(1 + 2ωଶ𝐿𝐶) − 4𝐿)].   (15) 

Used in (4) effective inverse covariance matrix 
𝑼𝒀𝒆𝒇𝒇

ି𝟏  is diagonal and the effective measurement 
uncertainty is given in the formula: 

𝑢௘௙௙
ଶ = 𝜃ଵ

ଶ𝑢ଶ(ξ) − 2θଵ ρ𝑢(ξ)𝑢(ψ) + 𝑢ଶ(ψ).   (16)                                      

The nominal values of the equivalent circuit 
parameters are as follows: 𝐿 =1 nH, 𝐶 = 350 pF, 𝑅 =1 Ω, 
the data obtained from the measurements are presented 
in Table 1.  

L LR

C

BA
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Table 1 – Values of measured frequencies and impedances at 
the measuring points 

No 1 2 3 4 5 6 7 8 9 10 

𝑓, MHz 145 160 175 190 205 220 235 250 265 280 

|𝒁|, Ω 3.93 4.87 5.81 6.2 5.76 5.0 4.23 3.62 3,13 2.75 

The standard frequency uncertainty is               
𝑢(𝑓) = 1/√3 Hz and the impedance module |𝒁| is 
measured with relative uncertainty δ(|𝒁|) ≈ 2 %.  

Standard uncertainties for three parameters            
 𝑣 = [𝑅, 𝐿, 𝐶] estimate by law their propagation LPU  

𝑢ଶ(𝑣) = ∑ 𝑢ଶ(𝑓௜)(௡
௜ୀଵ

డ௩

డ௙
|௙ୀ௙೔

)ଶ + 𝑢ଶ(|𝑍|௜)(
డ௩

డ|𝒁|
||𝒁|ୀ|𝒁|೔

)ଶ(17), 

where the sensitivity coefficients 
డ௩

డ௙
  and 

డ௩

డ|௓|
 are 

determined numerically. 
As a result of parameter matching β = 𝐶 charts 

received ϕஞந(Θଵ) quasi-quadratic criterion function, 
where the global minimum is estimated approximately 
as ϕஞநౢ୥୪୭ୠୟ୪୫୧୬ ≈ 0,182 for 𝐿 ≈ 0,992 nH. It is being 
shown on Fig. 4.  

 

Fig. 4. Variable-dependent criterion function Θଵ = 𝐿 
 

Parameter value β = 𝐶 corresponding to the global 
minimum of 𝐶 = 352 p𝐹. The matched value received 
𝐶 = 0,985 𝛺. 

Calculations of mean values of parameters are 
performed in EXCEL and in the 𝑅 environment, and in 
addition, the covariance matrix, correlator matrix and 
uncertainty are obtained from a properly prepared script 
in 𝑅. From the numerical experiment the matrix 𝑼𝒑 
Matching parameters of the form: 

 𝑼𝒑 = ቎
1,91 · 10ିସΩଶ 4,09 ·  10ିଵସΩH 1,03 · 10ିଵ ΩF

4,09 ·  10ିଵସΩH 4,3 ·  10ିଶ  Hଶ 1,4 10ିଶଷHF

1,03 · 10ିଵସΩF 1,4 10ିଶଷHF 6 ·  10ିଶସFଶ

቏  (18) 

and is bound to the correlator matrix  

𝑽 = ൥
1 0,45 0,3

0,45 1 0,9
0,3 0,9 1

൩.                      (19) 

From this correlator matrix, it follows that 
inductance and capacitance (0,9) are positively 
correlated, followed by inductance with resistance (0.45) 
and resistance with capacitance correlate weakly (0,3).  
Diagonal elements of a matrix 𝑼𝒑 are squares of 
standard uncertainties and hence they follow: 

𝑅 =0,985 (0,0138) Ω, (1,4%);   
𝐿 =0,992(0,0066) nH  (0,66%);  
𝐶 =352 (2,44) pF  (0,7%).  
The uncertainty of standard parameters of the 

equivalent resistor scheme and their mutual correlations 
also results in the standard uncertainty of the frequency 
response corridor and the expanded uncertainty 
𝑢ଶ൫|𝒁|(𝜔)൯ = 𝑺𝑼𝒑𝑺𝑻, 𝑈൫|𝒁|(ω)൯ = 𝑡ଵି

ഀ

మ
,௡ି௠𝑢൫|𝒁|(ω)൯.   

Assumed is: α = 0,05, 𝑛 = 10, 𝑚 =3, 
 𝑡

ଵି
బ.బఱ

మ
,ଵ଴ିଷ

=2,36. 

The elements of the vector were also determined, 
which are analytical partial derivatives of the impedance 

modulus and sensitivity coefficients  𝑺 = ቂ
డ|𝒁|

డோ
,

డ|𝒁|

డ௅
,

డ|𝒁|

డ஼
ቃ 

with the following formulas: 

𝜕|𝒁|

𝜕𝑅
=

𝑅(1 − 4ωଶ𝐿𝐶)

𝑍ᇱ
,  

𝜕|𝒁|

𝜕𝐿
=

2ωଶ(2𝐿 − 4ωଶ𝐿ଶ𝐶 + 𝑅ଶ𝐶)

𝑍ᇱ
,  

డ|𝒁|

డ஼
= −

னమ൫ ସனమ௅మାோమ൯൫ ோమ஼ିଶ௅ାସனమ௅మ஼൯

௓ᇲ , (20a,b,c) 

where 
   𝑍’ = |𝒁|[(1 − 2 𝜔ଶ𝐿𝐶)ଶ +  𝜔ଶ𝑅ଶ𝐶ଶ]ଶ.       (21) 

Figure 5 shows respectively: measurement points, 
the nominal and matched frequency response of the 
impedance module |𝒁| with corridors of standard 
uncertainty u(|𝒁|) and expanded uncertainty U(|𝒁|).   

 

Fig. 5. Measuring points, nominal and matched impedance 
frequency responses 

 
Figure 6 shows the fitting errors and the standard 

and expanded uncertainty corridors in relative units for 
the impedance modulus |𝒁| as a function of frequency 
with measurement points.  

 

Fig. 6. Standard and expanded coverage corridor relative 
uncertainty and relative error 
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The uncertainty corridor of the impedance module 
|𝒁|, over the entire range of characteristics under study 
varies from 2,5 % to less than 5 %. Its narrowest width 
occurs for the rising edge of the impedance modulus, 
i.e. for about 170 MHz, and the widest – for about 220 
MHz, i.e. after reaching the maximum value for the 
falling edge of the characteristic. 

4. Determination of capacitor model 
parameters from impedance components  

The multi-element equivalent circuits are used in 
modeling and descriptions of frequency changes of 
components of capacitors’ impedance. Such a scheme 
with three ideal resistances and two capacitances is on 
the figure 7.  

Values 𝑅, 𝐶 do not depend on the frequency. It is 
used for AC in the frequency range of 10 Hz to 10 GHz. 
Monte Carlo tests with it was made for the range 10Hz -
100 kHz in works [7-13]. 

C

C1

R 1
oRo

Rd

A

B  

Fig. 7. Diagram of capacitor replacement circuit 
 

Impedance 𝒁 the two ports A B for each frequency 
is described in complex numbers as: 

𝒁 = 𝑅𝑒𝒁 + 𝑗𝐼𝑚𝒁,                      (22)                                                                  

where components: resistance 𝑅𝑒𝒁 and capacitive 
reactance 𝐼𝑚𝒁 = −1/ω𝐶.  

Impedance 𝒁 between two-terminals AB shall be 
measured directly or shall be determined from the 
voltage 𝑈஺஻, current 𝐼஺஻  and the angle of their phase 
difference at each given frequency.  

In our considerations parameters of the capacitor 
model were adjusted to the results of measurements of 
alternating current components with five frequencies 
using the least squares method. Then numbers of the 
measured points and their parameters are 𝑛 = 10 and          
𝑚 =  5. The results are given in Table 2. 

Table 2 – Measurement data of frequency and corresponding 
impedance components of the resistor and capacitor schemes 

Lp 1 2 3 4 5 6 7 8 9 10 
f , 
Hz 

101 102 103 104 105 106 107 108 109 1010 

𝑅𝑒𝒁, 
kΩ 

508,3 65,61 1,107 0,0113 0,0003 0,0002 0,0002 0,0002 0,0002 0,0002 

𝐶, 
nF| 

8,476 6,006 5,015 5,000 5,0005 5,000 5,000 5,000 5,000 5,000 

 
The capacitor equivalent circuit from Fig. 7 

contains a resistance 𝑅ௗ connected in series with 
parallel connected resistance 𝑅଴ , capacity 𝐶଴ and branch 
of connected in serial  𝐶ଵ and 𝑅ଵ, i.e. of impedance 

𝑅ଵ +
ଵ

௝ன ஼భ
=

ଵା௝ன ோభ ஼భ

௝ன ஼భ
. 

Hence 

ଵ

ோ௘𝒁ିோ೏ା௝ ூ௠𝒁
=

ଵ

 ோబ
+ 𝑗ω 𝐶଴ +

௝ன ஼భ

ଵା௝ன ோభ ஼భ
.  (23) 

After transforming the terms into complex 
numbers, i.e. after multiplying the denominators and 
numerators by conjugating expressions to their 
denominators, we get 

𝑅𝑒𝒁 − 𝑅ௗ

(𝑅𝑒𝒁 − 𝑅ௗ)ଶ + 𝐼𝑚𝒁ଶ
− 𝑗

 𝐼𝑚𝒁

(𝑅 − 𝑅ௗ)ଶ +  𝐼𝑚𝒁ଶ
=   

=
ଵ

 ோబ
+

னమ ஼భ
మ ோభ

ଵାனమ ோభ
మ ஼భ

మ + 𝑗ω ቀ 𝐶଴ +
 ஼భ

ଵାனమ ோభ
మ ஼భ

మቁ. (24)       

The equality of the real and imaginary components 
of both sides of the expression (24) results in two 
equations: 

𝑅𝑒𝒁 − 𝑅ௗ

(𝑅𝑒𝒁 − 𝑅ௗ)ଶ + 𝐼𝑚𝒁ଶ
=

1

 𝑅଴

+  𝐶ଵ

ωଶ  𝐶ଵ𝑅ଵ

1 + ωଶ 𝑅ଵ
ଶ 𝐶ଵ

ଶ, 

−
ூ௠𝒁

ன

ଵ

(ோ௘𝒁ିோ೏)మାூ௠𝒁మ =  𝐶଴ +  𝐶ଵ
ଵ

ଵାனమ ோభ
మ ஼భ

మ.   (25a,b) 

The equations (25a,b) in the new variables are 
linear with the parameters  𝛽ଵ = 𝑅ଵ and  𝛽ଶ = 𝑅ௗ, i.e.: 

ψଵ(𝛽ଶ) =
ଵ

 ோబ
+  𝐶ଵξଵ( βଵ) 

and   
 ψଶ(βଶ) =  𝐶଴ +  𝐶ଵξଶ( βଵ)            (26a,b) 

The abscissa and elevations in the new variables 
are as follows:   

ξଵ௜ =
ω௜

ଶ  𝐶ଵβଵ

1 + ω௜
ଶβଵ

ଶ 𝐶ଵ
ଶ  

and 

 ξଶ௜ =
ଵ

ଵାன೔
మஒభ

మ ஼భ
మ  ;                  (27a,b) 

ψଵ௜ =
𝑅𝑒𝒁௜ − βଶ

(𝑅𝑒𝒁௜  − βଶ)ଶ + 𝐼𝑚𝒁௜
ଶ 

and 

ψଶ௜ =
ିூ௠𝒁೔/ன೔

(ோ௘𝒁೔ ିஒమ)మାூ 𝒁೔
మ .            (28a,b) 

From the law of error propagation follows the 
propagation of uncertainty according to LPU:  

𝑢(ξଵ௜) =
 2𝐶ଵβଵω௜

(1 + ω௜
ଶβଵ

ଶ 𝐶ଵ
ଶ)ଶ

𝑢(ω௜), 

𝑢(ξଶ௜) =
 2𝐶ଵ

ଶβଵ
ଶω୧

(1 + ω୧
ଶβଵ

ଶ Cଵ
ଶ)ଶ

𝑢(ω୧) =  𝐶ଵβଵ𝑢(ξଵ୧),   

𝑢(ψଵ௜) =
1

[(𝑅𝑒𝒁௜  − βଶ)ଶ + 𝐼𝑚𝒁௜
ଶ]ଶ

∗ 

∗ {{[𝐼𝑚𝒁௜
ଶ − (𝑅𝑒𝒁௜  − βଶ)ଶ]ଶ𝑢ଶ(𝑅𝑒𝒁௜) + 

+ 4𝐼𝑚𝒁௜
ଶ(𝑅𝑒𝒁௜  − βଶ)ଶ𝑢ଶ(𝐼𝑚𝒁௜)}଴,ହ;     (29a,b,с) 
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𝑢(ψଶ௜) =
1

ω௜[(𝑅𝑒𝒁௜  − βଶ)ଶ + 𝐼𝑚𝒁௜
ଶ]ଶ

∗ 

∗ {𝐼𝑚𝒁௜
ଶ[(𝑅𝑒𝒁௜ − βଶ)ଶ + 𝐼𝑚𝒁௜

ଶ]ଶ𝑢ଶ(ω௜)/ω௜
ଶ + 

+4(𝑅𝑒𝒁௜ − βଶ)ଶ𝐼𝑚𝒁௜
ଶ𝑢ଶ(𝑅𝑒𝒁௜) + 

+[(𝑅𝑒𝒁௜ − βଶ)ଶ − 𝐼𝑚𝒁௜
ଶ]ଶ𝑢ଶ(𝐼𝑚𝒁௜)}଴,ହ.   (29d) 

Assuming that measurements of both components 
are subject to uncertainties δ(𝑅𝑒𝒁௜), δ(𝐼𝑚𝒁௜) < 1%            
(𝑖 = 1, … , 𝑛) and that the uncertainty of frequency 
measurement 𝑢(𝑓) < 0,58 Hz, criterion functions are 
obtained  ϕଵ( 𝐶ଵ),  ϕଶ( 𝐶ଵ) shown in figure 8. They are 
determined from formula (4), for matrices inverse to 
effective covariance matrices for uncorrelated input 
quantities as 𝑢௘௙௙

ଶ = 𝜃ଵ
ଶ𝑢ଶ(ξ) + 𝑢ଶ(ψ). New 

variables ξଵ, ψଵ and ξଶ, ψଶ, despite, that ξଶ and 
ψଶ depend on the ω, they are practically uncorrelated. 

 The global minimum shall be obtained for           
βଵ = 𝑅ଵ =1 MΩ   and   βଶ = 𝑅ௗ  = 0,2 Ω. Number of 
measurement points 𝑛 = 10, and number of parameters    
𝑚 = 5. Received:  

   - minimum values of criterion functions 
ϕଵ୫୧୬(𝐶ଵ)< 0,015, ϕଶ୫୧୬(𝐶ଵ)< 0,0001;  

   - adjusted parameter values: 𝐶ଵ = 3 nF,             
𝐶଴ = 5,000055 nF, 𝑅଴ = 9,999608 MΩ.   

 
        a) 

 
        b) 

 
 
 
 
 
 
 
 

Fig. 8. Graphs a) and b) of the criterion function for 
equations (26a) and (26b) 

 
The uncertainties and correlations between 

quantities are due to the law of propagation of the 
uncertainty of the covariance matrix 𝑼𝒑 quantities, i.e. 
for the parameters of the:  

𝑼𝒑(𝐶ଵ, 𝑅଴, 𝐶଴, 𝑅ௗ , 𝑅ଵ) = 𝑪𝑼𝒊𝒏𝑪𝑻.          (30) 

Diagonal matrix 𝑼𝒊𝒏 has a size 3𝑛 x 3𝑛. For 
uncorrelated input quantities, it contains the following 
squares of uncertainty as elements: 𝑢ଶ(𝑓௜) for 
frequencies, 𝑢ଶ(𝑅𝑒𝒁௜) for the actual impedance 
component and 𝑢ଶ(𝐼𝑚 𝒁௜) for the imaginary impedance 
component. Matrix 𝑪 sensitivity ratios of size 𝑚 x 3𝑛 is 
the matrix of Jacobian. It is obtained by numerical 
differentiation of all parameters 𝑚 = 5 due to 3 x 𝑛   
input values. Symbolically, this is written as 

 C=൦

డ஼భ

డ௙భ
…

డ஼భ

డ௙೙
 

డ஼భ

డோ௘|𝒁|భ
…

డ஼భ

డோ௘|𝒁|೙

డ஼భ

డூ |𝒁|భ
…

డ஼భ

డூ௠|𝒁|೙
…     …       …  …              …            …              …          …              
డோభ

డ௙భ
…

డோభ

డ௙೙

డோభ

డோ௘|𝒁|భ
…

డோభ

డோ௘|𝒁|೙

డோభ

డூ௠|𝒁|భ
…

డோభ

డூ௠|𝒁|೙

൪ . (30а) 

Parameter covariance matrix 𝑼𝒑(𝐶ଵ, 𝑅଴, 𝐶଴, 𝑅ௗ , 𝑅ଵ) 
is both sides product of the correlator 𝑽 and matrix 𝑸 
size of  5 x 5, i.e.: 

  𝑼𝑷 = 𝑸𝑻𝑽𝑸 ,                                (30b) 
where 

Q = 

⎣
⎢
⎢
⎢
⎡
𝑢(𝐶ଵ) 0 0 0        0
0 𝑢(𝑅଴) 0 0       0

0
0
0

        
0
0
0

𝑢(𝐶଴)
0
0

𝑢
0

(𝑅ௗ)
0

0
0

𝑢(𝑅ଵ)⎦
⎥
⎥
⎥
⎤

. 

From this relationship, the values of the elements 
of the correlator matrix are obtained 𝑽 described in the 
form of table 3. 

Table 3 – Correlator matrix V data 

 𝐶ଵ 𝑅଴ 𝐶଴ 𝑅ௗ 𝑅ଵ 
𝐶ଵ 1 0,69 0,08 -0,013 0,22 
𝑅଴ 0,69 1 -0,25 -0,02 0,64 
𝐶଴ 0,08 -0,25 1 0,035 -0,46 
𝑅ௗ -0,013 -0,02 0,035 1 -0,023 
𝑅ଵ 0,22 0,64 -0,46 -0,023 1 
 

Table 3 shows that measurements of impedance 
components as a function of frequency lead to a strong 
positive correlation between the resistance 𝑅଴ and 
capacity 𝐶ଵ (0.69), resistances 𝑅଴ and 𝑅ଵ (0.64) and to the 
weak correlation between the capacity of the 𝐶ଵ and 
resistance 𝑅ଵ (0.22). A negative correlation occurs 
between the capacity of the 𝐶଴ and resistance 𝑅ଵ (-0,46) 
and as weaker for capacity 𝐶଴ with resistance 𝑅଴ (-0,25). 
The other pairs of elements are practically uncorrelated. 

 The uncertainties of elements of the capacitor 
equivalent diagram are described by the formula: 

𝑢ଶ(𝑤) = ෍[𝑢ଶ(𝑓௜)(

௡

௜ୀଵ

𝜕𝑤

𝜕𝑓
|௙ୀ௙೔

)ଶ + 

+𝑢ଶ(𝑅𝑒𝒁௜)(
డ௪

డோ௘𝒁
|ோ௘𝒁ୀோ௘𝒁೔

)ଶ+ 

+𝑢ଶ(𝐼𝑚𝒁௜) ቀ
డ௪

డூ௠𝒁
|ூ௠𝒁ୀூ௠𝒁೔

)ଶቃ,             (31) 

where:  𝑤 = {𝐶ଵ, 𝑅଴, 𝐶଴, 𝑅ௗ , 𝑅ଵ}. 
The results of measurements of the elements of the 

equivalent diagram along with their uncertainties are as 
follows: 
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𝐶଴ = 5,000055(0,017) nF (0,34%);  
𝑅଴ = 9,9996 (0,78) MΩ (7,8%);  
𝐶ଵ = 3(0,19) nF  (6,33 %);  
𝑅ଵ = 1(0,016) MΩ (1,6 %);  
𝑅ௗ = 0,2 (0,0015) Ω (0,75%).  
The standard uncertainty of the impedance 

module, i.e. the width of its coverage corridor, is 
calculated from the uncertainty propagation law as: 

𝑢ଶ൫|𝒁|(𝜔)൯ = 𝑺𝑼𝒑𝑺𝑻,                  (32) 

where: sensitivity vector 𝑺 size of 1 x m is derived 
analytically – see Appendix A. 

The expanded uncertainty is described by the 
formula: 

  𝑈൫|𝒁|(𝜔)൯ = 𝑡ଵି
ಉ

మ
,௡ି௠𝑢൫|𝒁|(𝜔)൯.         (33) 

In the numerical experiment discussed here, the:         
α = 0,05, n = 10, m = 5,  𝑡

ଵି
బ,బఱ

మ
;ଵ଴ିହ

= 2,57. 

The frequency characteristics of impedance on the 
logarithmic, nominal and fit scales, together with the 
measurement points and additionally relative errors, are 
given in Figures 9, 10 and 11. Figure 11 shows that the 
width of the aisle (expanded uncertainty) is slightly 
below 1% in the range 5·(102 – 108) Hz. At the 
beginning of the measurement range, the width is the 
largest and decreases from slightly above 5 % to 1 % in 
the range from 10 Hz to 500 Hz. In the range from 100 
MHz to 1 GHz it increases from 1% to 2 % and up to 10 
GHz it is at 2% of the value of the impedance module. 

 
Fig. 9. Frequency impedance characteristics of the capacitor 
model with measurement points as nominal and fit curves 

(logarithmic scale on the frequency axis) 

 
Fig. 10.  Log-log frequency response of capacitor schematic 

impedance 

 

Fig. 11. Relative standard errors and the standard and expanded 
relative uncertainty of the impedance measurement of the 

capacitor equivalent diagram (logarithmic frequency scale). 

5. Summary 

This article introduces a method for fitting 
nonlinear curves to the data for measured points. It uses 
the change of variables to obtain linear relationships 
fitted according to the weighted least squares criterion 
of WTLS. After changing the variables in this way, you 
can also use straight line regression. The uncertainty of 
the coordinates of the measurement points is also 
considered, as well as their correlations, if they occur in 
the measurements. 

The condition for using this method approximates 
the propagation of errors and measurement uncertainty, 
acceptable in metrology, using the first derivative of the 
transformation function. If the points under study are 
not too far from the nonlinear sought function, and the 
uncertainty of the data measurement is not too high, e.g. 
below 5%, then this method can be used successfully. 
The limitations are therefore the same as estimating the 
accuracy of measurements by the international GUM 
guide [1].  

The method also allows to determine the 
uncertainty corridor for a nonlinear function fitted to the 
measurement data. It has already been used in the 
authors' papers [14-20] for several different examples of 
measurements with the change of one and both 
coordinates of a nonlinear function. Computational 
examples of fitting various nonlinear functions to given 
measurement points, including implicit functions, are 
presented. They showed that the method of changing 
variables is universal if the new variables are properly 
selected.  

In literature, e.g. [2-6], simple examples of 
linearization of the function describing measurements 
are usually considered. There was no discussion of the 
method of fitting nonlinear functions with linearization 
by changing variables, nor a discussion of how to 
determine the boundaries of their uncertainty band 
without correlation and with correlations.  

The examples considered in this paper use the 
results of measurements of the impedance module of 
resistor and capacitor equivalent circuits in n=10 
frequencies. From them, the frequency characteristics of 
the impedance module were determined, nominal and 
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adjusted to the parameters of the system using the 
WTLS method along with its uncertainty corridor. For 
the capacitor, the resistive and reactance components of 
the impedance of its equivalent scheme were matched 
and their uncertainties were determined using the law of 
their propagation, i.e. the LPU method. 

The method used in this work for nonlinear 
functions can be fully useful in measurement practice. It 
is also worth considering the possibility of using it in 
the internationally developed extended version of the 
GUM guide. 

References 

1. JCGM 100:2008 Evaluation of Measurement Data. Guide to the Expression of Uncertainty in Measurement (Sevres, 
France: International Bureau of Weights and Measures BIPM), and its Supplements. 

2. Levenberg K. (1944). A Method for the Solution of Certain Non-Linear Problems in Least Squares // Quarterly of 
Applied Mathematics. 2 (2) 164-168 doi:10.1090/qum/10666.   

3. Marquardt D. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Parameters // SIAM Journal on Applied 
Mathematics. 11 (2): 431–41 doi:10.1137/0111030. 

4. Dennis J.E., Jr., Schnabel R.B. (1983). Numerical Methods for Unconstrained Optimization and Nonlinear Equations // 
SIAM 1996 reproduction of Prentice-Hall 1983.  

5. Draper R.D., Smith H., (1998) Applied Regression Analysis 3rd Ed., J. Willey, New York. 
6. Madsen K., Nielsen H.B., Tinglef (2004), Method for Non-Linear Least Squares Problems, 2nd Edition. April 2004. 

Technical University of Denmark. 
7. Kubisa S., Warsza Z. Uogólniony opis właściwości częstotliwościowych rezystorów // Elektronika, 3/2016 s.31-38     

DOI: 10.15199/13.2016.3.1. 
8. Kubisa S., Warsza Z.L.  Analiza błędów częstotliwościowych rezystorów. Część 1. Modele rezystorów przy prądzie 

przemiennym i ich parametry // Przegląd Elektrotechniczny 6/2016  s. 211-216. 
9. Kubisa S., Warsza Z.L. Analiza błędów częstotliwościowych rezystorów. Część 2. Korekcja częstotliwościowa 

impedancji rezystorów i jej skuteczność // Przegląd Elektrotechniczny 7/2016, 197-201. 
10. Kubisa S., Warsza Z. L. The frequency analysis of real resistors in relative values // Measurement Automation 

Monitoring (MAM 2016)  vol. 62, no 03, s. 80-86. 
11.  Kubisa S., Warsza Z. L. Generalized description of the frequency characteristics of resistors // SCIT 2016 Recent                 

Advances in Systems, Control, and Information Technology. (Editors: R. Szewczyk et all), vol. 543, series: Advances in 
Intelligent Systems and Computing. Springer Int. Publ.2017, 630-644, DOI 10.1007/978-3-319- 48923-0_67.  

12. Kubisa S., Warsza Z. L. Identification of parameters of the capacitor equivalent scheme using Monte Carlo methods.  
In: R. Szewczyk et all (ed.) // Automation 2017 Innovations in Automation, Robotics and Measurement Techniques, series 
Advances in Intelligent Systems and Computing  550. Springer Int. Publishing AG 2017 p.166-168.  DOI 10.1007/978-3-319-
54042-9-15.  

13. Kubisa S., Warsza Z. Dokładność identyfikacji parametrów modelu kondensatora 2 metodami MonteCarlo. PAR  
2_2018 s. 41-48.   

14. Puchalski J., Warsza Z.L.: The method of fitting a non-linear function to data of measured points and its uncertainty 
band. (in Polish: Estymacja niepewności wybranych funkcji nieliniowych wyznaczanych z pomiarów metodą regresji liniowej) // 
Pomiary Automatyka Robotyka PAR n. 3_2023 p. 45 –55, DOI:10.14313/PAR249/45. 

15. Puchalski J.G. Nonlinear Curve Fitting to Measurement Points with WTLS Method Using Approximation of Linear 
Model // Int J Auto AI Mach Learn. Vol. 4 Issue 1, June 2024 pp.36-60. ISSN 2593-7568. 

16. Warsza Z.L., Puchalski J. Assessment of the uncertainty of selected nonlinear functions determined from measurements 
by the linear regression method. Monography: Advanced Mathematical and Computational Tools in Metrology and Testing XIII. 
Pavese F., Forbes A.B., A Bošnjaković et all (eds.): Series on Advances in Mathematics for Applied Sciences. v. 94 © 2025 World 
Scientific Publishing Co. N. Jersey ∙London ∙Singapore, pp.288–307, doi.org/ 10.1142/ 9789819800674_0027. 

17. Warsza Z.L., Puchalski J., Więcek T.: Method of fitting a nonlinear function to measurement data and its uncertainty 
band // Proceedings of 15th scientific conference SP’2024 S: Measurement systems in research and industry. Łagów 9-12.06.2024 
University of Zielona Gora 2024 (Uniwersytet Zielonogórski) pp.151-154. 978-83-957716-4-4  

18. Warsza Z.L., Puchalski J., Więcek T.: Method with changing variables for fitting a nonlinear function to measurement 
data and its uncertainty band. // Measurement Sensors 38(2):101730. DOI:10.1016/j.measen.2024.101730  

19. Warsza Z.L., Puchalski J., Więcek T.: Metoda ze zmianą zmiennych dla dopasowania funkcji nieliniowych do danych 
pomiarowych i ich niepewności  (Konf. PPM 2024 Gliwice) Przegląd Elektrotechniczny, ISSN 0033-2097, R. 100 n. 12/2024 
s.252 -259   doi:10.15199/48.2024.12.55 

20. Warsza  Z.L., Puchalski J., Więcek T.: Przykłady dopasowywania charakterystyk nieliniowych  metodą zmiany 
zmiennych i ich niepewności. Metrologia red. M.R Rząsa (monografia konferencji: 56 MKM Kalisz). Politechnika  Opolska, 
Opole 2024 s. 29-44. ISSN 1429-6063, ISBN 978-83-66903-71-5. 

21. Warsza Z. L., Puchalski J., Więcek T.: Novel method of fitting a nonlinear function to measurement data based on 
linearization by change variables, examples and uncertainty // Open access Journal Metrology MDPI 2024, 4(4), 718-735; 
https://doi.org/10.3390/metrology4040042 

22.  Puchalski J., Warsza Z.L., Wyznaczanie parametrów schematów zastępczych rezystora i kondensatora z pomiarów 
częstotliwościowej charakterystyki ich impedancji // LVII Międzyuczelniana Konferencja Metrologów Poznań 22-24. 09. 2025 
Materiały konferencyjne. Wydawnictwo Politechniki Poznańskiej. Poznań 2025 s. 325 -350 

 



Metrology and Instruments 2/2025 Метрологія та прилади 
General metrology Загальна метрологія 
 
 

© Zygmunt L. Warsza, Jacek Puchalski, 2025 13 

Supplement 

Below are the analytically determined partial derivatives of the capacitor's equivalent impedance modulus for 
all parameters of the equivalent schematic elements. Impedances are represented as a series combination of 

resistances 𝑅ௗ and complex impedance 
ଵ

஺ା௝஻
: 

𝒁 =
1

𝐴 + 𝑗𝐵
+ 𝑅ௗ,                                                                               (A. 1) 

where 

 A =
ଵ

ୖబ
+

ୖభ

ୖభ
మା

భ

ಡమిభ
మ

=
ଵ

ୖబ
+

னమେభ
మୖభ

னమେభ
మୖభ

మାଵ 
  and  𝐵 = ω ቀ𝐶଴ +

஼భ

னమ஼భ
మோభ

మାଵ 
ቁ           (A.2) and (A.3) 

The partial derivative with respect to 𝑅ௗ for impedance square 𝑍ଶ(Z =  |𝐙|), i. e. డ௓మ

డோ೏
= 2𝑍

డ௓

డோ೏
,  where 

డ௓

డோ೏
=

ଵ

ଶ௓

డ௓మ

డோ೏
=

ଵ

௓
ቀ

஺

஺మା஻మ + 𝑅ௗቁ                                                 (A.4)  

and similarly, derivatives with respect to 𝑅଴, 𝐶଴ i 𝑅ଵ: 

డ௓

డோబ
=

ଵ

ଶ௓

డ௓మ

డோబ
=

ଵ

௓ோబ
మ

஺ା(஺మି஻మ)ோ೏

(஺మା஻మ)మ   
 ;                                                                (A.5) 

డ௓

డ஼బ
=

ଵ

ଶ௓

డ௓మ

డ஼బ
= −

ன஺஻

௓(஺మା஻మ)మ ቀ
ଵ

஺
+ 2𝑅ௗቁ;                                                          (A.6) 
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డோభ
=

ଵ

ଶ௓
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=

னమ஼భ
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మோభ
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మோభ
మ൯ାଶ஻ன஼భோభ) 

௓(஺మା஻మ)మ(னమ஼భ
మோభ

మାଵ)మ
.     (A.7) 

Derivation of the derivative with respect to 𝐶ଵ: 
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=

ଵ

ଶ௓

డ௓మ

డ஼భ
=
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.           (A.8) 
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Визначення параметрів еквівалентних схем резисторів та конденсаторів за вимірюванням частотних 
характеристик їх імпедансу 

Зигмунд Л. Варша, Яцек Пухальський 
 

Анотація 
У статті представлено метод визначення параметрів еквівалентних схем резисторів та конденсаторів шляхом 

з'єднання двовивідних елементів з одиничним лінійним опором, індуктивністю або ємністю. Значення та невизначеності 
цих параметрів оцінюються за допомогою методу найменших квадратів для вимірювань частотної характеристики 
модуля імпедансу. Це завдання є математично складним, оскільки зазвичай отримується система нелінійних рівнянь, яка 
аналітично не розв'язується. Для отримання лінійних рівнянь було запропоновано використовувати метод заміни 
змінних. Цей метод був раніше розроблений авторами для регресії нелінійних функцій і вже успішно використовується в 
метрологічних задачах. 

Ключові слова: схеми заміщення, опір, ємності, індуктивність, частотна характеристика, модуль імпедансу. 


